

CONTENTS

- PROGRAM NOTATION
- CODE LETTERS
- SUBROUTINE LIBRARY
- DEMONSTRATION PROGRAMS
- INITIAL ORDERS

The following notation is used on all library program sheets.

Entry points:	If control may arrive at an order by being transferred there by an E or G order the location of the latter (relative to the first order of the subroutine) is shown on the extreme left, with an arrow pointing to the address of the order to which control is transferred, e.g., $16 \rightarrow 23 \text { T } 6 \theta$
Unconditional transfers of control:	A horizontal line is drawn underneath every E or G order which is intended to produce a transfer of control each time it is encountered.
Variable orders:	Orders and pseudo-orders which are to be changed during the course of the calculation are shown in brackets.
Pseudo-orders:	A double vertical line is drawn on the left of the contents of all storage locations which are intended never to be obeyed as orders.
Use of J:	When reading the address part of an order the initial orders treat the letter J as a digit of value 10. Some subroutines therefore use J for the address 10, thus saving one row of holes on the tape.
Preset parameter	$C(45), C(46)$... when used as preset parameters are referred to as H parameter, N parameter ...
Control combinations:	Any "order" with code letter K or Z is a control combination. The more common ones are described in ["Control Combinations"].

[Source: WWG 1951, p. 104]

When an order such as A 50 F or $A \mathrm{~F}$ is being transferred from the tape to the store, the first character to be read is the function letter, and the corresponding binary number is placed by the initial orders in a suitable location for temporary storage. The next character may be either a digit of the address or a code letter F or D. These can be distinguished by the fact that F and D correspond to binary numbers which are greater than ten. The character just read is therefore tested by having 11 subtracted from it; if the result is negative the character must represent a digit of the address, otherwise it represents a code letter. As the successive digits are read the address is built up progressively in binary form. When the code letter is encountered the address and the number representing the function letter are added together. If the code letter is F the result represents the complete order and is transferred to the store as it stands. If the code letter is $D, 2^{-16}$ is added to the result before it is transferred to the store.

In addition to the code letters F and D so far referred to, there are thirteen other code letters which may be used to terminate an order. The object of these code letters is to facilitate the use of subroutines. Each causes the contents of a certain storage location to be added to the order before it is transferred to the store. The complete list of code letters is as follows:

Code letter	Location whose content is added to the order	Number added
F	41	zero
θ	42	variable
D	43	2^{-16}
ϕ	44	
H	45	
N	46	
M	47	
Δ	48	
L	49	variable
X	50	
G	51	
A	52	
B	53	
C	54	
V	55]	

Storage location 41 contains zero, so that the code letter F leaves the order unchanged. Storage location 43 contains 2^{-16}, so that code letter D causes 2^{-16} to be added to the order. These two code letters thus have the effect described earlier.

All the above code letters indicate the end of an order, and cause it to be placed in its correct location in the store. The code letter π causes 2^{-16} to be added to the order (in this it resembles D) but must be followed by another code letter to indicate the end of the order. It is thus possible by using π to cause both 2^{-16} and some other number to be added to the order before it is put away in the store.
[Source: WWG 1951, p. 16, with a correction]

Each subroutine is distinguished by a letter denoting its category and a serial number within that category. The categories are as follows.
Category Subject

A	Floating point arithmetic.
B	Arithmetical operations on complex numbers.
C	Checking.
D	Division.
E	Exponentials.
F	General routines relating to functions.
G	Differential equations.
J	Special functions.
K	Power series.
L	Logarithms.
M	Miscellaneous.
P	Print and layout.
Q	Quadrature.
R	Read (i.e. Input).
S	nth root.
T	Trigonometrical functions.
U	Counting operations.
V	Vectors and matrices.

In the specifications ... the following information is given in abbreviated form immediately beneath the title of each subroutine:

1. Type of subroutine, i.e., whether open, closed, interpretive, or special.
2. Restriction on address of first order. If the word "even" appears it denotes that the first order must have an even address; if no note appears it indicates that the address may be either odd or even.
3. Total number of storage locations occupied by the subroutine.
4. Addresses of any storage locations needed as working space by the subroutine.
5. Approximate operating time (not possible to state in all cases).
[Source: WWG 1951, p. 72]

C7 Check function letters, with localized print suppression. Special; 61 storage locations; time, see Note 5.

Performs a given program order by order, and prints the function letters of those orders which are drawn from certain specified parts of the store; other orders are obeyed silently. The store may be divided into four regions, orders in two of which have their function letters printed.

Preset parameters:

Notes: 1. The regions of the store are specified by the parameters a, b, c as follows:

$$
\begin{array}{rr}
\text { (i) } & \mathrm{n}<\mathrm{a} \\
\text { (ii) } & \mathrm{a} \leq \mathrm{n}<\mathrm{b} \\
\text { (iii) } & \mathrm{b} \leq \mathrm{n}<\mathrm{c} \\
\text { (iv) } & \mathrm{c} \leq \mathrm{n}
\end{array}
$$

The subroutine will either "print low," i.e., print function letters of orders in (i) and (iii), or "print high," i.e., print function letters of orders in (ii) and (iv).
2. Print routines in the original program must be arranged to lie in regions from which the function letters are not printed. Characters printed by such routines will appear as figures.
3. A new line of printing is begun at each transfer of control; a clear line is left where orders have been obeyed silently unless such orders themselves cause printing to appear on this line.
4. C7 only tests the locations of orders at each transfer of control, so that if control enters a new region during a consecutive sequence, the mode of operation does not change immediately.
5. Speed of operation is about 5 orders per second when printing function letters, 30 orders per second when suppressed.
6. C7 must be placed at the end of the orders on the tape. After being read it will direct control to itself and commence checking at order m.

	T	Z
0	(Δ	F)
1	(P	F)
2	Q	F
3	A	F
4	θ	F
5	Δ	F
6	π	F
7	K 3000	F
8	P	H
9	P	N
10	\| P	M

59	- C 350	$=C 94 \theta \theta$		
60	\\| S 12θ	$=S 71 \theta \theta$		
	$\begin{array}{ll}\text { G } & \text { K } \\ \text { W } 2015 & \text { Z } \\ \text { E } & \text { L }\end{array}$	$\begin{aligned} = & \mathrm{E} 28 \mathrm{Z}: \\ & \text { control } \end{aligned}$	ading of ta 28 with E I	
* Order 16 takes the following forms:				
		Printing	Suppressed	
Print low		E 46θ	G 48θ	
Print high		G 46θ	E 48θ	

[Source: WWG 1951, pp. 79-80, 118-20]

Special; even; $37+51$ storage locations; time $=1 / 5$ sec per digit printed.

May be applied to a routine in order to print $C(A c c)$ before obeying T orders. It has a delayed start and will cease checking during each closed subroutine. It may be used only on programs containing subroutines with at most one program parameter. If the program has the order A $n F$ in $S(n)$ for a purpose other than entry to a closed subroutine, C10 will fail at that point.

Preset parameters:	45	H	P h F see Note 1

$46 \quad N \quad P \quad n \quad$ number of digits to be printed
47 M $\quad \mathrm{P}$ m F address of order at which checking starts.

Notes:

1. Part of the subroutine, 51 orders long, is placed in locations h to ($h+50$) and may be written over a print routine in the master routine in which case printing from the master routine will be suppressed.
2. A new line of printing is started at each transfer of control.
3. A line feed occurs when a closed subroutine is encountered.
4. The address m of the order at which checking starts must be chosen as described in Note 2 of C 7.
5. The first number printed by C 10 is the numerical representation of the order at which checking starts.
6. C10 must be placed at the end of the tape and followed by E p K P F, directing control to the master routine.
7. A T order immediately following a closed subroutine with no program parameters will not cause $C(A c c)$ to be printed.

Note: Code letter H refers to locations in the first part of the subroutine and θ to locations in the second part.

24	$\bigcirc \quad \theta$	print		
25	$\mathrm{F} \quad \theta$			
26	$\mathrm{S} \quad \theta$	」		
27	$\mathrm{L} \quad 4 \mathrm{~F}$			
28	$\mathrm{T} \quad \pi \theta$			
29	A $\quad 9 \mathrm{H}$	］digit count		
30	G 16 H			
31	$\mathrm{T} \quad \pi \theta$	clear accumulator		
32	E 34θ	to sequence control		
33	$\\| \mathrm{P} \quad \mathrm{N}$	number of digits		
$160 \rightarrow 34$	A 2 H			
35	S 12θ	test for order A n F in		
36	G 19θ	$\mathrm{S}(\mathrm{n})$ ，i．e．，S．O．$=$ C．O．		
37	$\mathrm{S} \quad 2 \mathrm{~F}$			
38	E 19θ	」	Test for	
39	－ 3θ	line feed	entry to	
40	A 20θ		closed	
41	A 12θ	form A $\mathrm{n}+2 \mathrm{~F}$	subroutines	
42	S 26θ		and obey	
43	U 12θ		them	
44	U 47 H		directly	
45	S 50	form G $\mathrm{n}+1 \mathrm{~F}$		
46	T $\quad 50 \mathrm{H}$			
47	（P F）	$=C(A c c$.$) or A n+2$ when		
48	T 220	subroutine is encountered		
49	A 40 H			
50	（P F）	sign of $C(A c c$.$) or G n+1 F$ when		

When an order A n F is encountered in n ，the order in（ $n+2$ ）is placed in the C．O．position and control is transferred to（ $n+1$ ）with A 20 in the accumulator． Since there is a G order in（ $n+1$ ）control is transferred to the subroutine and the link which is planted in the subroutine is $E 22 \theta$（or $E 23$ if the subroutine has one program parameter）．When the operation of the subroutine is finished control is transferred to order 22θ（or 23θ ）of C10 and checking recommenced．
θ

	T \quad Z		
0	$\\|\left(\begin{array}{ll}(P & F\end{array}\right.$	］working space	
1	（P F）	」 for print cycle	
2	Z F		
3	$\Delta \quad F$		
4	θ－		
5	Q 1 F		
6	\｜Q F		
7	A M	7 extracts order at which checking	
8	T $\quad 47 \mathrm{H}$	starts and replaces it by order	
9	A 150	directing control to C10（order 210）	
10	T M		
11	$0 \quad 4 \theta$	carriage return	
12	03θ	line feed	
13	$\bigcirc \quad 9 \mathrm{H}$	figure shift	
14	E 25 F		

$15\left|\begin{array}{rrr}|\mid & 21 & \theta \\ \mathrm{E} & 7 & Z \\ \mathrm{P} & & \mathrm{F}\end{array}\right|$

The orders 7 to 14 are executed once during input，and then written over by：

	T 77		
$18 \theta \rightarrow 7$	$0 \quad 4 \theta$	carriage return	
8	03θ	line feed	
9	$\mathrm{S} \quad 2 \mathrm{H}$	form A n F when control is transferred	
$360 \rightarrow 10$	$\mathrm{U} \quad 12 \theta$		
11	S 12θ		
12	（G2047 M）	＝A－1 M，becomes select order（S．O．）	
13	U 22 O		
14	A 50 H		
15	S 2 H		Checking
16	G $\quad 34 \mathrm{H}$	test for transfer of control	cycle
17	S 60		similar
18	$\mathrm{G} \quad 70$	」	to that
$36 \mathrm{H}, 38 \mathrm{H} \rightarrow 19$	U 50 H		employed
20	S $\quad 50 \mathrm{H}$		in C11．
Enter $\rightarrow 21$	A $\quad 47 \mathrm{H}$	Add＂C（Acc．）＂	
22	（ T M）	current order（C．O．）	
23	U 47 H	transfer＂C（Acc．）＂	
24	E 26θ		
25	S 3θ	test $\mathrm{C}(\mathrm{Acc}$.$) for sign，$	
$24 \theta \rightarrow 26$	S 47 H	if－send $1 / 2$ to 50 H	
27	U 50 H		
28	S $\quad 50 \mathrm{H}$	」	
29	A 22θ	］examine C．O．and test	
30	$\mathrm{S} \quad 1 \mathrm{H}$	for T order	
31	E 5 H	」	
$6 \mathrm{H} \rightarrow 32$	U 22θ		
33	S 22θ		
$32 \mathrm{H} \rightarrow 34$	A 12θ	$]$	
35 36	$\begin{array}{rrr}\text { A } & 2 & \mathrm{~F} \\ \mathrm{G} & 10 & \theta\end{array}$	］sequence control	

During the course of this subroutine the 17 most significant digits of $C(A c c$. are stored in 47 H and are restored when an order from the original program is executed．
［Source：WWG 1951，pp．81，120－2］

Closed; 36 storage locations; working positions 6 D and 8 D ; time $=$ $(10 \mathrm{~m}+120) \mathrm{msecs}$, where $2^{-m-1} \leq|C(4 D)| \leq 2^{-m}$.

Forms C(0D)/C(4D) where $C(4 D) \neq 0$ and $\neq-1$, and places result in OD.
Accuracy: maximum error is $\pm K \cdot 2^{-35} \pm 2^{-34}$, where $K=$ quotient.
$a_{n+1}=a_{n}-c_{n+1} a_{n}+c_{n+1}$
$\mathrm{c}_{\mathrm{n}+1}=-\mathrm{a}_{\mathrm{n}} \mathrm{b}+(\mathrm{b}-1)$, where b is the shifted divisor
$i-a_{n} \rightarrow 1 / b$
$c_{n} \rightarrow 0 \quad a_{n}$ and c_{n} are negative
$\mathrm{a}_{0}=2 \mathrm{~b}-2 \sqrt{ } 2+1$; therefore c_{n} is negative until process is completed

```
[Source: WWG 1951, pp. 83, 125-6]
```

Closed; 19 storage locations; working positions OD and 6D; time = 930 msecs.

Forms exp [C(4D)] - 1 and places the result in 4D, $-1 \leq C(4 D)<0 \cdot 693$.
Accuracy: probable error $=2^{-33}$.
$\left(e^{x-1}\right)$ to $4 D$, where $x=C(4 D)$
Uses a recurrence relation $z_{n-1}=z_{n}+z_{n}^{2} / 2^{n+1}$ starting with $\mathrm{z}_{33}=\mathrm{x}$ and ending with $\mathrm{z}_{0}=\left(\mathrm{e}^{\mathrm{x}}-1\right)$

0		K 3	$]$ plant link
1	T	18θ]plant link
2	Y	F	
3	L	D	2^{-n} to 6D
$16 \rightarrow 4$	T	6 D	」
5		4 D	
6		4 D	form z^{2}
7	T	D	
8	H	6 D	
9	V	D	$z_{n}{ }^{2} / 2^{n}$
10	R	D	$z_{n}^{2} / 2^{n+1}$
11	A	4 D	$] \mathrm{z}_{\mathrm{n}}+\mathrm{z}^{2} / 2^{\mathrm{n}+1}$
12	Y	F	
13	T	4 D	z_{n-1} to 4D
14	A	6 D	shift strobe
15	L	D	
16		4θ	test strobe for end of cycle
17	T	D	
18	(E	F)	link

[Source: WWG 1951, pp. 83, 126]

M3 Print heading.
Closed; 10 storage locations (temporarily); working position 0 .
Copies information directly from the tape to the teleprinter and may thus be used to print a heading at the top of a sheet.

Notes: 1. M3 is placed at the front of the program tape unless R9 is used, in which case M3 follows R9. No control combinations need precede M3.
2. M3 is immediately followed by the heading, which may include line feed, carriage return, etc., according to the teleprinter code.
3. The heading is followed by blank tape, and the succeeding orders should be prefaced by a control combination of the form P K T n K.

[Source: WWG 1951, p. 91; Cambridge University Archives COMP B, 3 June 1950]

```
M20 Set parameter value, by means of telephone dial, during input
    of orders.
```

Special; uses no storage space.
If M2O is included at the appropriate point on the input tape, the H-parameter may be set to $d \cdot 2^{-15}$ by dialing an integer d. As soon as the first few rows of M20 have been read the machine stops on a Z-order. Exactly three decimal digits should then be dialed to specify d.

This subroutine consists largely of control combinations. It requires no storage space, but uses $22 \mathrm{~F}, 42 \mathrm{~F}$, and 43 F , normally occupied by orders of the initial input routine, as working space.

Notes: 1. A preset parameter other than H may be set by changing the control combination T 45 K near the end of the M20 tape.
2. If it is desired to dial more, or less, than three digits the central section of M20 should be repeated an appropriate number of times, or omitted, as the case may be.

Tape Entry

[Source: WWG 2nd ed., 1957, pp. 154, 190-1]

Prints the positive number in $0 D$ to n places of decimals，leaving $R \cdot 10^{n}$ in $0 D$ ， where R is the remainder．
$\left.\begin{array}{l|lll} & p & A & p \\ \text { Program parameter：} \\ \text { p＋1 } & G & S & F\end{array}\right]$ orders calling in P1

Notes：1．Teleprinter must be on figure shift．
2．Layout must be separately controlled．
3．Round－off is not included．

	G K	
0	A 18 O	］Plant link
1	U 17θ	」
2	S 20θ	P Plant S m＋2 F
3	T 50	」
4	H 19 O	
5	（ P F）	（1）$-\mathrm{n} \times 2^{-15}$ to Acc．（2）Count digits．
$16 \rightarrow 6$	T 5θ	
7	V D	Multiply
8	U F	］Print
9	O F	
10	F F	］Check and remove
11	S F	］Digit cycle
12	L $\quad 4 \mathrm{~F}$	Shift
13	T D	
14	A 5θ	
15	A 2 F	Count digits
16	G 6θ	」 」
17	（E F）	Link
18	｜｜ 3 F	
19	$J \quad \mathrm{~F}$	$=10 / 16$
20	｜M 1 F	

［Source：WWG 1951，p．92；Cambridge University Archives COMP B］

Closed； 32 storage locations；working positions 1，4，and 5；time＝ about 900 msecs ．

Prints $2^{-16} \cdot C(0)$ with suppression of nonsignificant zeros but without layout．

		K	
0	A	3 F	］Plant link
1	T	25θ	」
2	H	29θ	
3	V	F	Multiply by $2^{16} / 10^{5}$
4	T	4 D	
5	A	3θ	$] \mathrm{V} \mathrm{F}=-1 / 16$ to $\mathrm{S}(0)$
6	T	F	
7	H	30 －	Set multiplier
8	S	6θ	Set digit count
$24 \rightarrow 9$	T	1 F	Digit count
10	V	4 D	］Multiply
11	U		
12	A	F	$]$ Test for first
13	G	26θ	］non－zero digit
14	T	F	］Clear Acc．and S（0）＊
15	T	F	
16	0	5 F	Print \quad Digit cycle
17	A	4 D	
18	F	4 F	Check and remove
19	S	4 F	
$28 \rightarrow 20$	L	4 F	Shift
21	T	4 D	
22	A	1 F	
23	S	3θ	Count digits
24	G	9θ	」 」
25	（E	F）	Link
$13 \rightarrow 26$	S	F	Add 1／16
27	\bigcirc	31 O	Space Suppress zero
28	E		」
29	｜｜J	995 F	$\cong 2^{16} / 10^{5}$
30	J		＝10／16
31	\｜ϕ	F	Space

＊$S(0)$ becomes cleared when the first non－zero digit is encountered，thus preventing the suppression of later zeros．

Closed; even; 35 storage locations; working position 4D; time = approx. 1.8 sec .

Prints $2^{34} \cdot \mathrm{C}(0 \mathrm{D})$ with zero suppression but without layout.
Notes: 1. Teleprinter must be on figure shift.
2. Layout must be separately controlled.
3. C(OD) must be positive and less than $10^{10} \cdot 2^{34}$.
4. If the number to be printed is less than 10^{9}, the left-hand zeros are replaced by spaces. In any case, 10 positions on the paper are used.

* $C(0)=-1 / 32$ until first nonzero digit is printed, when $C(0)$ becomes positive, thus preventing the suppression of later zeros.
** These symbols appear on the tape and serve merely to clear 28D, thus ensuring that the sandwich digit between 28 and 29 is zero, before further orders are read.
[Source: WWG 1951, pp. 92, 141-2]

Closed; 46 storage locations.

Prints the decimal number in $C(0 D)$, rounded-off. Digit spacing, number of digits printed and layout are determined by a program parameter.

Preset parameter: $45|\mathrm{H}|$ A m D round-off order

Notes: 1. Figure shift is called during the input of orders.
2. The number of digits and their spacing is determined by the program parameter, which is calculated as in note 5. Carriage return and line feed will occur before the number is printed if K 4096 F is added to this layout constant. Each number is followed by a space.
3. If the F order shows an error a line feed will occur and the next digit printed may be in error.
4. Negative numbers are preceded by a negative sign, positive numbers by a space.
5. The digit layout is determined by the program parameter $P \mathrm{x}$ F, where x may be obtained as follows. Imagine the printed characters, including digits and spaces (only single spaces are permissible) laid out in the form below, starting with the most significant digit at the left-hand end. Then add together the numbers below the spaces, and the number above the last digit; the sum is x.

8	4	2	1										
1	0	0	0	5	2	1							
9	9	4	2	1	5	2	6	3	1				
2	6	8	4	2	6	8	4	2	6	8	4	2	1

2	1											
4	2	6	3	1								
5	2	1	0	5	7	3	1					
7	8	4	7	3	6	8	9	9	4	2	1	
6	8	4	2	6	8	4	2	6	8	4	2	6

For example: (i) to print 10 digit numbers with spaces after the 3rd, 6th, and 9th digits, $x=6144+384+24+4=6556$; (ii) to print 8 digit numbers with spaces after the 4 th and 5 th digits, $x=3072+768+32=3872$.

[Source: WWG 1951, pp. 94, 143-4]

Closed; 55 storage locations; working positions $0,1,4,5$, and 6.

Given a sequence of numbers punched as decimals followed by sign, this subroutine places these numbers in $p D,(p+2) D,(p+4) D . .$. and returns control to the master routine when F appears on tape.

Preset parameters: $\left.\begin{array}{l|l}45 & H \\ 46 & \mathrm{~N}\end{array}\right]$ positions are used by subroutine
$\left.\begin{array}{lc|ccc} & m & A & m & F \\ \text { Program parameter: } & m+1 & G & s & F\end{array}\right]$ orders calling in R1.

Notes: 1. Decimal point is immediately before first digit punched.
2. Any number of digits up to 10 may be punched; more will exceed the capacity of the accumulator.
3. Blank or erased tape is treated as F.

* Order 13 is I F during input of punched digits, T F for dummy zeros which make up remainder of 10 digits.
** Digit count is actually set to 11 because + or - sign is counted as a digit.
[Source: WWG 1951, pp. 96, 146-8]

Reads the input tape and converts the decimal integers thereon to binary form multiplied by 2^{-34} and places these in sequence in storage locations mD, (m+2)D, (m+4)D, etc.

Parameter: T m D must follow the subroutine.

Notes: 1. After the subroutine $T \mathrm{~m}$ D is punched, followed by the integers, each terminated by F with the exception of the last one which is terminated by $\pi \mathrm{T} \mathrm{Z}$.
2. After the integers have been read, $\pi \mathrm{T} Z$ returns control to the initial orders and subsequent orders read from the tape will be written over R2.

Followed on tape by:
E 13 Z on subroutine tape
T m D punched by user
Hence control enters subroutine at order No. 13, with $T \mathrm{~m}$ D in the accumulator.

* The multiplier register contains $10 / 32$ throughout input of orders and operation of this subroutine.

```
    ** When obeyed for the first time in each number cycle, this order
clears OD.
```

[Source: WWG 1951, pp. 96-7, 148]

R3 Input of one signed long decimal fraction.
Closed; even; 41 storage locations; working positions 4D and 6D.
Reads one fraction punched in decimal form followed by sign, and places it in OD.

* Order 9 is IF during input of punched digits, TF for dummy zeros which make up remainder of 10 digits.
** Digit count is actually set to 11 because sign symbol is counted as a digit.
*** These symbols appear on the tape and serve merely to clear 28D, thus ensuring that the sandwich digit between 28 and 29 is zero, before further orders are read.
[Source: WWG 1951, p. 97; Cambridge University Archives COMP B]

Closed; 22 storage locations; working positions 4, 5, and 6.

Reads one integer y punched in decimal form followed by sign, and places $y \cdot 2^{-34}$ in $0 D$.

Notes: 1. $|y|<2^{-34}$
2. R4 is applicable to either long or short numbers; in the latter case $y \cdot 2^{-16}$ will be left in 0 provided that $-2^{16} \leq y<2^{16}$.

[Source: WWG 1951, p. 97; Cambridge University Archives COMP B]

```
R9 Input of positive integers during input of orders. Standard form
    for regular use.
    Special: 15 storage locations.
```

The actual orders of this subroutine are identical with those of R2, but R9 is intended always to be placed in locations 56 to 70 inclusive, and to remain there throughout the input of a whole program, being used any number of times. Each time it is used it will read a sequence of positive decimal integers and place them in consecutive long storage locations.

Notes: 1. The subroutine tape commences with P K T 56 K , so that it may be copied immediately at the head of the tape. It does not have $E 13 \mathrm{Z}$ at the end, so that it is not automatically obeyed after being read.
2. R9 is called in by the control combination E 69 K T m D. This is followed by the integers each terminated by F except the last, which is terminated by π to return control to the initial orders. After this must be punched a control combination to restore the transfer order, e.g., T Z. The integers will be placed in mD, (m+2)D, (m+4)D, etc.
3. Negative integers may be read if 2^{35} is added to each before punching.
[Source: WWG 1951, p. 98]

Closed; 22 storage locations; working position 0D; time $=$ approx. $(36 n+180)$ msecs, where $(21 / 4)^{-n-1} \leq C(4 D)<(21 / 4)^{-n}$.

Forms $\sqrt{ } C(4 D)$ where $C(4 D)>0$ and places result in 4D.
Accuracy: Number of significant figures in result is two less than number of significant figures in argument.

Note: 1. If $C(4 D)=0$, subroutine continues to cycle indefinitely.

[Source: WWG 1951, pp. 98, 149-50]

Closed; 25 storage locations; working positions 4, 5, 8, and 9; time = approx. 1 sec .

Forms cube root of $C(6 D)$ and places result in $0 D . C(6 D)$ may be positive or negative and is left unchanged at the end.

Root is formed digit by digit, using a shifting (negative) strobe.

[Source: WWG 1951, pp. 99, 150]

T1 Cosine, rapid.
Closed; even; 44 storage locations; working position 0D; time = 82 msecs.

Forms $0.5 \cos [2 \cdot C(4 D)]$ where $|2 \cdot C(4 D)| \leq \pi / 2$, and places result in $4 D$. Accuracy: maximum error $=2^{-33}$.

[Source: WWG 1951, p. 99; Cambridge University Archives COMP B]

ARITHMETIC
This program illustrates various arithmetic instructions on the Edsac simulator.

	T $\quad 64 \mathrm{~K}$	Set load point	
64	Z F	Stop	
65	A 96 F	$\mathrm{acc}=33$	
66	A 97 F	$\mathrm{acc}=\mathrm{acc}+46=79$	Short integer
67	$\mathrm{S} \quad 98 \mathrm{~F}$	$\mathrm{acc}=\mathrm{acc}-96=-17$	arithmetic
68	$\mathrm{T} \quad \mathrm{F}$		
69	H 100 F	$] \operatorname{acc}=3 / 16 \times 7 / 8=21 / 128$	Short fractions
70	V 101 F		
71	T F		
72	H 104 D	$] \mathrm{acc}=1 / 3 \times 1 / 3=1 / 9$	
73	V 104 D		Long fractions
74	Y F	Round acc to 34 binary places	
75	A 106 D	$\mathrm{acc}=\mathrm{acc}-1 / 9=0$ to $34 \mathrm{~b} . \mathrm{p}$.	
76	T F		
77	H 99 F	$] \mathrm{acc}=\left(5 \times 2^{-16}\right)^{2}=25 \times 2^{-32}$	
78	$\mathrm{V} \quad 99 \mathrm{~F}$		Integer
79	$\mathrm{L} \quad 64 \mathrm{~F}$	$] \operatorname{acc}=\operatorname{acc} \times 2^{-16}=25 \times 2^{-16}$	multiplication
80	$\mathrm{L} \quad 64 \mathrm{~F}$		
$82 \rightarrow 81$	L D] Left shift till acc -ve	
82	$\mathrm{E} \quad 81 \mathrm{~F}$		
$87 \rightarrow 83$	R D	7	
84	R D		Shift operations
85	R D	Pretty pattern	
86	S 103 F		
87	$\mathrm{G} \quad 83 \mathrm{~F}$	」	
	T $\quad 96 \mathrm{~K}$	Set load point	
96	P 16 D	$=33$	
97	$\mathrm{P} \quad 23 \mathrm{~F}$	$=46$	Integer constants
98	P $\quad 48 \mathrm{~F}$	$=96$	
99	$\mathrm{P} \quad 2 \mathrm{D}$	$=5$	
100	E F	$0.00112=3 / 16$	
101	K F	$0.11102=7 / 8$	Short fractions
102	$\Delta \quad \mathrm{F}$	$1.10002=-1 / 2$	
103	I F	$0.10002=1 / 2$	
104	H 682 D] 0.0101. $=1 / 3$	
105	T 682 D		Long fractions
106	K 455 F] 0.111000.. $=-1 / 9$	
107	- C 455 F		
	E 64 K	$]$ Enter at location 64	
	P F		

[Author: M. Campbell-Kelly, 1990]

Note: Cubes are generated until arithmetic overflow occurs and negative values are produced. The program stops when $P 6$ fails due to trying to print a negative number.

Table of routines

Routine	Location of first order	Number of storage locations occupied
P6 (print) 56 32 Master	88	-

Make-up of program tape
space P K
T 56 K

space P Z

Master

E Z P F
Master routine

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Enter $\rightarrow 0$

1} \& G \& \& K \& \multirow[t]{3}{*}{| Set θ-parameter |
| :--- |
| Stop |
| Figure shift |}

\hline \& Z \& \& F \&

\hline \& 0 \& 29 \& θ \&

\hline \multirow[t]{6}{*}{$22 \rightarrow$} \& 0 \& 30 \& θ \&] New line

\hline \& 0 \& 31 \& θ \&

\hline \& A \& 23θ \& θ \&] k to OF

\hline \& T \& \& F \&

\hline \& A \& 6 \& θ \&] Print 0F using P6

\hline \& G \& 56 \& F \&

\hline \multirow[t]{5}{*}{P6 \rightarrow} \& T \& 23 \& θ \& Zero to k

\hline \& A \& 24 \& θ \&

\hline \& A \& 27 \& θ \& $\mathrm{n}+1$ to n

\hline \& T \& 24 \& θ \&

\hline \& S \& 24 \& θ \&] -n to count

\hline \multirow[t]{6}{*}{$\begin{aligned} 21 \rightarrow & 13 \\ & 14 \\ & 15 \\ & 16\end{aligned}$} \& T \& 26 - \& θ \&

\hline \& A \& 25 \& θ \&

\hline \& A \& 28 \& θ \& $\mathrm{m}+2$ to m

\hline \& U \& 25 - \& θ \&

\hline \& A \& \& θ \&] $\mathrm{k}+\mathrm{m}$ to k

\hline \& T \& 23θ \& θ \& 」

\hline
\end{tabular}

19	A	26	θ		Increment count	
20	A			」		
21	G		θ		Jump to 13 if count	
22	E	2	θ		Repeat main cycle	
23	P		D		k (${ }^{3}$; =1 initially)	
24	P		D		n (=1 initially)	
25	P		D		m (=1 initially)	
26	P		F		count	
27	P		D		=1	
28	P	1			= 2	
29	π		F		figs	
30	θ		F		cr	
31	Δ		F		lf	

[Author: M. Campbell-Kelly, 1990]

Table of routines

Routine	Location of first order	Number of storage locations occupied
D1 (divide)	56	36
P1 (print)	92	21
Master	113	-

Make-up of program tape
space P K

T 56 K

$\theta \Delta \star$ RECIPROCALS $\theta \Delta \pi$ Table heading
space P Z
T 56 K

space P Z

space P Z

E Z P F

[Author: M. Campbell-Kelly, 1990]

```
    HELLO WORLD
    Prints "HI" on the teleprinter
```


[Author: M. Campbell-Kelly, 1990]

Prints the primes of the odd integers from 5 up to 4 decimals digits，until stopped by the operator

```
n = number being tested
m = number being tested as a factor
p = position on line of printed page
d = digit counter
```

	31	T 107 S	As required by initial input
	32	－ 92 S	Figures
$87 \rightarrow$	33	093 S	Line feed New line
	34	O 94 S	Carriage return
	35	S 5 S	］Set position count， $\mathrm{p}=-5$
	36	T 6 S	」
$86 \rightarrow$	37	O 95 S	］Double space
	38	O 95 S	」
$106 \rightarrow$	39	T 7 S	7
	40	A 96 S	
	41	R 4 S	
$43 \rightarrow$	42	S 97 S	Test whether m is
	43	E 42 S	a factor of n （see note 2）
	44	L 4 S	
$46 \rightarrow$	45	A 97 S	
	46	G 45 S	
	47	S 98 S	
	48	G 100 S	」
	49	T 7 S	
	50	A 97 S	$\mathrm{m}+2$ to m
	51	A 4 S	
	52	T 97 S	」
	53	H 97 S	7
	54	N 97 S	
	55	L 64 S	If $m>$ square root of n
	56	L 64 S	then stop testing
	57	A 96 S	
	58	E 39 S	」
	59	T 7 S	7
	60	A 96 S	n is prime；transfer to 1 S for printing
	61	U 1 S	
	62	A 4 S	］ $\mathrm{n}+2$ to n
	63	T 96 S	」
	64	A 99 S	］ 3 to m
	65	T 97 S	」
	66	S 88 S	］Set digit count， $\mathrm{d}=-4$
$83 \rightarrow$	67	T 7 S	］
	68	H 91 S	7
	69	A 1 S	
	70	E 72 S	
$73 \rightarrow$	71	V 91 S	
$72 \rightarrow$	72	S 89 S	
	73	E 71 S	
	74	A 89 S	Print digit
	75	T L	
	76	0 S	
	77	H 90 S	
	78	V 1 S	
	79	L 4 S	
	80	T L	」

Notes

1. The odd numbers, n, beginning from 5 are tested.
2. Testing is done by effecting division by repeated subtraction.
3. Factors tested are 3, 5, 7, ... m, where m need not exceed the square root of n .
4. L or S is treated as the least significant digit.
[5. Location: 4 S contains $2 ; 5 S$ contains $10 ; 6 S$ contains p; 7 S contains d.]
[6. The annotation has been augmented to correspond to the original flow diagram.]
[7. Order 85 has been changed from A 98 S to A 4 S, to correspond to the original specification in which 5 numbers per row are printed.]
[Author: D. J. Wheeler, c.May 1949]
[Source: "The EDSAC Demonstration", Report of a Conference on High-Speed Calculating Machines (1949), reprinted in B. Randell, Origins of Digital Computers 1982, Springer, New York, pp. 423-9. With additional annotation.]

PRINT SQUARES

Prints the squares and first differences of the integers 1 to 100

31 enter \rightarrow	32	$\begin{aligned} & \text { T } \quad 123 \mathrm{~S} \\ & \text { E } \quad 84 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { As required by } \\ & \text { initial input } \\ & \text { Jump to } 84 \end{aligned}$	
enter \rightarrow	33	$\\| \mathrm{P}$	Used to keep count of subtractions	
	34	$\\| \mathrm{P} \quad \mathrm{S}$	$\begin{aligned} & \text { Power of } 10 \text { being } \\ & \text { subtracted } \end{aligned}$	
	35	P10000 S		
	36	P 1000 S	For use in the decimal	
	37	P 100 S	binary conversion	
	38	$\mathrm{P} \quad 10 \mathrm{~S}$		
	39	$\mathrm{P} \quad 1 \mathrm{~S}$		
	40	Q S		
	41	$\pi \quad$ S	Figures	
	42	A 40 S		
	43	$\phi \quad$ S	Space	
	44	$\Delta \quad \mathrm{S}$	Line feed	
	45	θ S	Carriage return	
	46	O 43 S		
	47	O 33 S		
	48	$\mathrm{P} \quad \mathrm{S}$	Becomes number to be printed	
$94 \rightarrow$	49	A 46 S] Put 043 S in 65 S	
	50	T 65 S		
$72 \rightarrow$	51	T 129 S	Clear 129S	
	52	(A 35 S)	7 Put power of 10	
	53	T 34 S] in 34S	
	54	E 61 S	Jump to 61	
$63 \rightarrow$	55	T 48 S		
	56	A 47 S		
	57	T 65 S		
	58	A 33 S	To control printing	
	59	A 40 S		
	60	T 33 S	」	
$54 \rightarrow$	61	A 48 S		
	62	S 34 S	7	
	63	E 55 S		
	64	A 34 S		
	65	$\mathrm{P} \quad \mathrm{S}$		
	66	T 48 S		
	67	T 33 S	Print contents	
	68	A 52 S	of 48 S	
	69	A 4 S		
	70	$\mathrm{U} \quad 52 \mathrm{~S}$		
	71	S 42 S		
	72	G 51 S		
	73	A 117 S		
	74	T 52 S	」	
	75	(P S	End print [link]	

[Author: M. V. Wilkes, c.May 1949]
[Source: "The EDSAC Demonstration", Report of a Conference on High-Speed Calculating Machines (1949), reprinted in B. Randell, Origins of Digital Computers 1982, Springer, New York, pp. 423-9. With additional annotation.]

INTRODUCTION

In their report "The Early Development of Programming Languages" (1976) Knuth and Trabb Pardo argue that the best way to understand a programming language is to study specimen programs; this communicates the flavor of a language far more effectively and concisely than a lengthy programming manual. In their report the authors introduce the TPK algorithm.

The TPK algorithm is a short program that demonstrates many of the characteristic features of a program; by coding TPK in a variety of languages Trabb Pardo and Knuth have been able to contrast a number of historic programming languages in a most succint yet informative fashion.

A version of the TPK algorithm written in Pascal is given below, together with specimen input and output. The TPK algorithm demonstrates the following points: the use of variables, constants and a vector; a program loop proceeding by positive increments and another by negative increments; accessing successive vector elements; a conditional statement; built-in functions, such as square-root and absolute value; input-output procedures; a user written procedure. The program is quite short and would probably have taken between a few seconds and a couple of minutes to run on a first-generation computer, depending on how fast the computer was and how effective the language and its translator.

Of course TPK does not actually do anything useful, but it would be difficult to devise a more illustrative program using fewer statements.

```
Pascal program: program TPK (input, output);
    function f (t: real): real;
    begin
            f := sqrt(abs(t)) + 5 * t * t * t
    end;
var
    i: integer;
    y: real;
    a: array[0..10] of real;
begin
    for i := 0 to 10 do
            read (a[i]);
        for i := 10 downto 0 do
            begin
                    write(i : 5);
                    y := f(a[i]);
                    if y > 400 then writeln (999.0:13:5)
                                    else writeln (y:13:5)
            end
    end.
Test data:
\begin{tabular}{llllll}
1.5 & 8 & -6 & 9.5 & 2.3 & 9.9 \\
2.1 & -2.1 & 6 & 0.001 & -0.002
\end{tabular}
```

$$
9 \quad 0.03162
$$

$$
8 \quad 999.00000
$$

$$
7 \quad-44.85586
$$

$$
5 \quad 47.75413
$$

$$
999.00000
$$

$$
62.35157
$$

$$
999.00000
$$

$$
-1077.55054
$$

$$
999.00000
$$

$$
18.09974
$$

Reference:

D. E. Knuth and L. Trabb Pardo, "The Early Development of Programming Languages", pp. 197-213 of N. Metropolis et al (eds.) A History of Computing in the Twentieth Century, Academic Press, NY, 1980.

THE TPK ALGORITHM FOR EDSAC

Scaling calculation

In the TPK algorithm, for each element t in the vector we have to calculate

$$
\begin{equation*}
y=\sqrt{ }|t|+5 t^{3} \tag{1}
\end{equation*}
$$

If we make the assumption that all elements of the vector are less than about 10 in magnitude then we can rewrite (1) as

$$
\begin{equation*}
y^{\prime}=2^{-11} \cdot \sqrt{ }\left|t^{\prime}\right|+5 \cdot 2^{-1} \cdot t^{\prime 3} . \tag{2}
\end{equation*}
$$

where $y^{\prime}=2^{-13} y$ and $t^{\prime}=2^{-4} t$. Now all the numbers handled are less than unity.

Table of routines

Sub-routines etc.	Location of first order	Number of storage locations occupied
R1 (read fractions)	56	55
P7 (print integer)	$112 *$	35
P14 (print fraction)	147	46
S2 (square root)	193	22
Auxiliary subroutine	215	23
Master routine	238	-

* first order must be in an even location

Notes:

By convention the first subroutine is placed in location 56 onward, locations 0 to 55 being occupied by the initial orders and the preset parameters. The vector is stored as follows: a_{0} in 20D, a_{1} in 22D ..., and a_{10} in 40D. (The notation $n D$ means the long location consisting of locations n and $n+1$.$) These locations are in fact occupied by the$ initial orders during program input, but are overwritten when the program proper assumes control. This was quite a usual practice in order to make the most of the storage.

Master routine

M 0	P $\quad 4 \mathrm{D}$	$]^{1 / 2} \cdot 10^{-9} 7^{8}$
1	P F	
2	T 1714 F	$] 10^{-4} \cdot 2^{13}$
3	Z 219 D	」
4	J F	10/16
5	P 1600 D	$400 \cdot 2^{-13}$
6	P 3996 F	$999 \cdot 2^{-13}$
7	$\mathrm{P} \quad 5 \mathrm{~F}$	Count i (+10)
8	P D	Decrement (+1)
9	$\mathrm{P} \quad 2 \mathrm{~F}$	Modifier
10	$\theta \quad \mathrm{F}$	Carriage return
11	$\Delta \quad \mathrm{F}$	Line feed
12	$\phi \quad F$	Space

Notes:

The master routine corresponds to the main program of the Pascal version of the TPK algorithm. Its operation should be reasonably clear from the annotation and the notes below.

1. The top line, $G K$, is the control combination to set the θ-parameter for relocation.
2. The next three lines are used to set the M-parameter so that all constants used in the program are addressed relative to location m, where m is the value of the M-parameter. The advantage of this is that if the code for the master routine changes in length during the program development process, only the $\mathrm{M}-$ parameter has to be changed and the instructions in the program which refer to constants do not have to be altered.
3. Although the original TPK algorithm uses a for-loop to input the vector, there was a vector-read subroutine R1 so we have used it.
4. The subroutine R1 inputs fractions so the data has already been scaled by 101 ; hence the scale factor of $10 / 16$. (The input data is shown below.)
5. The M-parameter is set for short numbers (ie. with the length indicator bit set to zero); the code letter π preceding M overrides this for a long number.
6. The program parameter for P14 controls the print layout; this particular value gives 9 decimal digits with a space between the 4 th and 5 th positions.
7. Lines 29-31 are particularly interesting: They modify the array-accessing order in line 14 by subtracting 2 from the address so that next time round the loop the array element immediately to the left of the current one is used. This sort of technique had to be used in most early machines until index registers were adopted. Incidentally, the program might be improved slightly if it were made self-initialising; as it is, if it were desired to process another set of data, the program would have to be reloaded to restore the array accessing order to its original state.

8．These two pseudo－order pairs are long constants needed for rounding and for scaling；they were obtained from a list of such useful constants given in Programming Bulletin No． 3 （11 October 1950）．

Auxiliary subroutine

0	$\begin{array}{lll} \mathrm{G} & & \mathrm{~K} \\ \mathrm{~A} & 3 & \mathrm{~F} \end{array}$	］Plants link 1
1	T 22θ	］Plants
2	A 8 D	7
3	$\mathrm{E} \quad 60$	
4	$\mathrm{S} \quad 8 \mathrm{D}$	$\left\|t^{\prime}\right\|$ to 4D 2 Calculates V｜t＇｜
5	$\mathrm{S} \quad 8 \mathrm{D}$	
$3 \rightarrow 6$	T $\quad 4 \mathrm{D}$	」
7	A 7θ	Calls in S 2 to
8	G 193 F	」calculate V4D
S2 $\rightarrow 9$	H 8 D	7
10	$\mathrm{V} \quad 8 \mathrm{D}$	
11	T D	
12	V D	
13	R D	Calculates 5－2－1．t＇3
14	U D	using add and shift
15	$\mathrm{L} \quad 1 \mathrm{~F}$	orders 3
16	A D	
17	T D	J
18	A 4 D	7
19	R 512 F	Calculates $2^{-11} \sqrt{ }\left\|t^{\prime}\right\|+5 \cdot 2^{-1} \cdot t^{3}$
20	A D	and stores in 8D
21	T 8 D	」
22	（Z F）	Return order planted here

Notes：

The auxiliary subroutine corresponds to the procedure f in the Pascal version of TPK；its job is to evaluate equation（2）above．The subroutine uses 8D for the argument t^{\prime} and the result y^{\prime} ．Some explanatory notes follow．

1．Lines $0-1$ plant the return link for the Wheeler jump in line 22 ．Note that line 22 is filled with a stop order，$Z \mathrm{~F}$ ；this is so that the program will come to a halt if the return link is put in the wrong place due to a coding error．

2．The coding for absolute value is spelled out in full；the operation was too short to justify inclusion in the subroutine library．

3．Multiplication by powers of two is done by left and right shift orders；this was one of the advantages of scaling in powers of two．
space $P K^{1}$
T $56 \mathrm{~K}^{2}$ Program goes into location 56 onwards


```
P F Extra pseudo-order to make first location of P7 even
space P Z 3
```

P7
space P Z
G K T 45 K A 276 D 4 Preset parameter for P14
P14
space P Z
S2
space P Z

Auxiliary subroutine
space P Z

Master
Master routine
space P K 5
E $238 \mathrm{KP} \mathrm{F}{ }^{6}$
Notes:

1. The program tape begins with a length of blank leader tape. The initial orders would make some interpretation of blank tape and the control combination $P \mathrm{~K}$ overcomes this by resetting the initial orders to the state they were in immediately before the blank tape.
2. The control combination $T 56 \mathrm{~K}$ causes the following program to be placed in location 56 onwards. (This is broadly equivalent to setting the origin in a modern assembler with a directive such as "ORG 56".)
3. The routines are separated by blank tape so that the individual routines can be identified. Hence the control combination P Z (or P K). (Incidentally, very early on P Z P Z was used, but it was shortly realized that P Z only was sufficient (Programming Bulletin No. 5, 15 January, 1951). The action of the initial orders could be very obscure.
4. The control combinations to set a preset parameter immediately precede a library subroutine. This sets the H-parameter, but we will forgo the details.
5. Some blank tape is left for the insertion of a "jiffy tape" for program corrections at the end of the program.
6. The final control combination causes the program to be entered at location 238. (In a modern assembler we would use something like "ENTER 238".)

NUMBER SEQUENCE FOR INPUT DATA
15+8+6-95+23+
$99+21+21-6+0001+$
0002-F

Note:
Numbers are punched as decimal fractions followed by a sign. F is a data terminator.

PRINTED OUTPUT

10	0000	04472
9	0000	03162
8	0999	00000
7	-0044	85586
6	0047	75414
5	0999	00000
4	0062	35157
3	0999	00000
2	-1077	55051
1	0999	00000
	0018	09974

Note:
A single space has been left between the fourth and fifth digits of the right-hand column of the tabulation; this is where the decimal point would go when the answers are scaled up by 10^{4}. Notice also that the zero on the last line of the tabulation is missing; this is due to a programming limitation in the zero-suppression coding of the library subroutine P7.
[Source: M. Campbell-Kelly, "Programming the EDSAC: Early Programming Activity at the University of Cambridge", Annals of the History of Computing, Vol. 2 (1980), pp. 7-36.]

Notes

1. When the starting button is pressed these orders are placed in locations 0 to 30 and control is set so that the first order obeyed is in location 0 .
2. The first order to be punched on the tape must be $T \mathrm{n}$, where the last order is to be input to position $n-1$. Control is then automatically transferred to the beginning of the routine after the last order has been input by the initial input routine.

0	T S	Clears accumulator and puts 10/32 in multiplier
1	H 2 S] register
2	T S] Control switched to 6. Locations 0-3 are then
3	E 6 S] used as 'working space'
4	$\mathrm{P} \quad 1 \mathrm{~S}$	2-15 Constants
5	$\mathrm{P} \quad 5 \mathrm{~S}$	$10 \cdot 2^{-16} \quad$
3, $30 \rightarrow 6$	T S	
7	$I \quad S$	Input function digits to their correct digital
8	A \quad S	position in 0
9	$\mathrm{R} \quad 16 \mathrm{~S}$	
10	T L	」
$20 \rightarrow 11$	I 2 S	Reads character on the tape and test whether
12	A 2 S	it is numerically less than 10
13	S 5 S	
14	E 21 S	」
15	T 3 S	Clears accumulator using 3 as a rubbish dump
16	$\mathrm{V} \quad 1 \mathrm{~S}$	One stage of the binary-decimal conversion. New
17	L 8 S	partial address is obtained by taking ten times
18	A 2 S	old partial address and adding the next digit
19	T 1 S	
20	E 11 S	Transfers control to location 11
$14 \rightarrow 21$	R 4 S	Control is transferred to 21 from the order 14 when character read is S or L. When L has been read the 17 th digit of the accumulator is a 1 , when S has been read it is a 0
22	A $\quad 1 \mathrm{~S}$	The address has been formed x 2^{-16} and so needs
23	L L	- doubling
24	A S	Forms the complete order in the accumulator
25	$\left(\begin{array}{lll}T & 31 & \text { S }\end{array}\right.$	Transfers the order to its final position in store
26	A 25 S	Increases the address specified in order 25
27	A 4 S	by 1; eg. T 31 S is replaced by T 32 S ,
28	U 25 S] and so on
29	S 31 S	Tests whether all orders have been taken in.
30	G 6 S	- Location 31 contains orders $T(n+1) S$, the first order ton be placed in the store: and so $C(A C C)$ will be positive only when all orders have been taken into the store
		End of initial orders
31	T (n+1) S	The first order to be placed in the store

[Sources: D. J. Wheeler, "Programme Organisation and Initial Orders for the EDSAC", Proceedings of the Royal Society A, Vol. 202, pp.573-89, 1950; and "The EDSAC Demonstration", Report of a Conference on High-Speed Calculating Machines (1949), reprinted in B. Randell, Origins of Digital Computers 1982, Springer, New York, pp. 423-9. With additional annotation.]

$20 \rightarrow 30$	A 40 F	This adds the function digits of the order to the accumulator. The result is that the number in the accumulator is positive if the order has function digits represented by T or E, while it is negative in the case of G.
31 $20 \rightarrow \quad 32$ 33	$\begin{array}{lll}\mathrm{E} & 25 & \mathrm{~F} \\ \mathrm{~A} & 22 & \mathrm{~F} \\ \mathrm{~T} & 42 & \mathrm{~F}\end{array}$	If the accumulator is positive, the order in the accumulator replaces the order in 22; if negative the accumulator contains the address specified in order 22 which is then put in 42 (the storage location corresponding to θ).
$26 \rightarrow 34$ 35 36 37 38	$\begin{array}{lrl}\text { I } & 40 & \mathrm{D} \\ \mathrm{A} & 40 & \mathrm{D} \\ \mathrm{R} & 16 & \mathrm{~F} \\ \mathrm{~T} & 40 & \mathrm{D} \\ \mathrm{E} & 8 & \mathrm{~F}\end{array}$	These take in the function digits, shift them to their correct place and transfer them to 40. The order in 35 is also used as a constant.
39 40	P $\quad 5 \mathrm{D}$ (P D)	A constant used in the input of the address. It equals 11.2^{-16} A constant used during the start. It equals 2^{-16}

When the starting button is pressed, the initial orders are placed in storage locations 0 - 40 and control transferred to). The first orders to be executed are the following:

The initial input is now ready to take in orders; the first part of the input tape is blank so that the first code letter is a space which corresponds to 16; control is therefore switched from 20 to 32 , and the contents of 22 are transferred to 42 . This action will continue, the spaces being treated alternately as function digits and code letters. The first symbols encountered will be P and F. There are two possibilities, either
(1) the last space has been treated as a function digit in which case the word read is "space" Z, which causes the address ($n-1$) to be placed in 42, where n is the address in the Transfer Order; or
(2) the last space was treated as a code letter, in which case the word read is PZ, which causes the address in 42 to be placed in the Transfer Order.

In either case, the Transfer Order is unaltered and will place the first order read from the tape in 44, unless a control combination to reset the Transfer Order occurs first, as will usually be the case.
[Source: WWG 1951, pp.159-60, with corrections from WWG 1957, pp. 218-20]

