
Department of Computer Science, University of Warwick
Coventry CV4 7AL, UK

EdsacPC

A Tutorial Guide to the Warwick University
EDSAC Simulator

by

Martin Campbell-Kelly

Windows 95 and NT Edition

September 1996

mck
Note on Printing

The Edsac Tutorial Guide uses a variety of paper sizes and orientations. If you wish to print the Guide you must check the "Shrink to Fit" option in the print dialog.

© Martin Campbell-Kelly, 1990-1996

The Cover

The cover illustration shows an
interactive computer game of
Tic-Tac-Toe developed by a student
programmer in 1952.

To play the game, Open… OXO in
the folder of Edsac demonstration
programs, and press the Start button.
Enter your moves using the telephone
dial.

- 3 -

Edsac
A Tutorial Guide to the Warwick University

EDSAC Simulator
Martin Campbell-Kelly

Department of Computer Science

University of Warwick

Abstract

The EDSAC was the world’s first practical stored-program computer; it was designed

and built at Cambridge University, and performed its first fully automatic calculation

on 6 May 1949. The Warwick University simulator is a faithful representation of the

EDSAC designed to run on a personal computer or workstation. The user interface

has all the controls and displays of the original machine, and the system includes a

library of original programs, subroutines, debugging software, and program

documentation. This report includes a description of the EDSAC and an account of

the seminal programming techniques developed for it during 1949-51. Several

demonstration programs and programming problems are supplied, so that users can

gain first-hand experience of what it was like to develop and run a program on a first-

generation computer.

Contents

Before You Begin 4

1 Getting Started 5

2 EDSAC Architecture and Arithmetic 13

3 Programming the EDSAC 19

4 Debugging: Getting Programs Right 31

5 Problems from the Summer School and Elsewhere 36

Bibliography 38

Appendix of Tables 39

© Martin Campbell-Kelly, 1990-96. Department of Computer Science, University of Warwick,
Coventry CV4 7AL, United Kingdom. E-mail: mck@dcs.warwick.ac.uk. Revised September 1996.
Minor corrections December 1996.

- 4 -

Before You Begin: What the Papers Said

In the late 1940s the EDSAC - and “electronic brains” in general - captured the public
imagination and were widely reported in the press. Before you begin using the
simulator you might like to read the newspaper headlines and extracts below; while
not always accurate or temperate, they do capture the excitement of the period.

A Don Builds a Memory

Short, dapper Dr. M.V. Wilkes, director of the Cambridge mathematical laboratory
and ex-wartime radar backroom boy, is in charge of the calculator ... He told me
yesterday: “The brain will carry out mathematical research. It may make sensational
discoveries in engineering, astronomy, and atomic physics. It may even solve
economic and philosophic problems too complicated for the human mind. There are
millions of vital questions we wish to put to it.”

- Daily Mail, October 1947

New Brain Stores Orders

The world’s most advanced electronic calculator, one of the so-called mechanical
minds, was recently completed at Cambridge University mathematical laboratory.
Yesterday the joint designers, Mr. M.V. Wilkes and Mr. W. Renwick, gave me a
preview of “Edsac” (electronic delay storage automatic calculator). It has a 3,500-
valve “brain” weighing about a ton. ... A team of 10 have been assembling “Edsac’s”
120 racks of valves, covering a floor area of about 500 square feet, since early in
1946.

- Daily Telegraph, June 1949

Mechanical Brain

On the top floor of a rather drab building in a narrow Cambridge back street is an
apparatus which seems to consist chiefly of a vast number of valves set in grey
painted racks. ... this weird array of wires and valves is a “mechanical brain.” It has
just been completed and it is the most advanced in the world. It is probably the major
scientific marvel of 1949 and although until now we have lagged behind America in
mechanical brains this one puts us streets ahead ...

This is how it works. First Mr Wilkes fed a strip of paper punched with holes
into a “ticker-tape” machine. As the paper ticked through ... miniature television
screens showed a row of green blobs ... then almost instantaneously a teleprinter
nearby began to print rows of figures. That was all. There were no dramatic sparks,
no dramatic flashes ...

There are not enough “brains” to go around at the moment, but a dozen would
probably be sufficient for the whole country ... The future? The “brain” may one day
come down to our level and help with our income-tax and book-keeping calculations.
But this is speculation and there is no sign of it so far.

- The Star, June 1949

- 5 -

1 GETTING STARTED

The purpose of the EDSAC simulator is to provide an authentic evocation of a first-
generation computer. The material in this guide is accessible at several levels. This
section, Getting Started, gives a broad overview of the technology of the EDSAC,
and enables the first demonstration programs that were designed to put the machine
through its paces to be run; this material should be accessible to any computer literate
person. Section 2, Architecture and Arithmetic, describes the EDSAC’s architecture,
the instruction set, and data storage and arithmetic; this material should be accessible
to anyone who is familiar with twos-complement arithmetic and basic computer
structure. Sections 3 and 4, which cover programming and debugging, should be
accessible to anyone acquainted with programming at the machine-code or assembler
level. Finally, in Section 5 a number of programming problems are given, which
range from elementary to quite difficult.

The Tutorial Guide assumes that readers are familiar with your personal-computer
user interface and text-editing conventions, but assumes no familiarity with the
EDSAC itself. So that you can explore the EDSAC without recourse to other
materials, this guide is designed as a self-contained document; however, you should
note that this still leaves quite a lot more you can learn about the EDSAC. Details of
the literature on the EDSAC are given in the Bibliography.

You will find the Tutorial Guide is of most value if you work through it
systematically and run each demonstration program as it is encountered, and attempt
at least some of the exercises. This is advisable, not least, because the EDSAC
simulator is an accurate representation of a very primitive computer system - there
are, deliberately, almost no facilities provided for trouble-shooting, other than those
which were originally provided on the EDSAC.

1.1 Display and Controls

The EDSAC simulator comes in four main parts: the simulator itself, a folder of
program “tapes,” the Tutorial Guide, and EDSAC Program Documentation (Fig. 1a).
Enter the system by double-clicking on the Edsac Icon, or otherwise. Once in the
Edsac system, you can either edit program documents or run programs.1 Before we
look at program documents, let’s look at the simulator itself. The simulator should
look as in Fig. 1b, although all the displays will be empty until the various controls
are used and a program is started. However, before doing that it will be useful to see
what the original EDSAC environment looked like (Fig. 2).

Fig. 2a shows a general view of the EDSAC taken shortly after its completion in May
1949. Like all stored-program computers, the EDSAC had a processor, a memory,
and input-output devices. The processor occupied most of the bulk of the EDSAC -
some 3500 electronic tubes in all. The memory cannot be seen in the general view,
but Fig. 2b shows a battery of the mercury delay lines from which it was constructed,
photographed shortly before the machine was put together. Input-output was achieved
on the EDSAC by means of a 5-track paper-tape reader operating at 50 characters per

1 In this manual “Edsac” applies specifically to the simulator; “EDSAC” is used to refer to the
original computer.

- 6 -

second, and a Creed teleprinter operating at 62/3 characters per second. This
equipment can be seen on the wooden table at the right of the general view.

A little more about the memory. The main memory was designed to have a total of 32
delay-lines (or “tanks”), each of which stored 32 words of 18 bits. Hence the total
memory capacity of the EDSAC was the equivalent of about 2 kilobytes. The same
technology of mercury delay lines was also used for the processor registers - although
the delay lines were much shorter as they stored only a few bits of information. The
two types of delay line were therefore known as long and short tanks. A useful feature
of this early serial memory technology was that it was possible to display the contents
of the store on Cathode Ray Tube (CRT) monitors. The EDSAC’s monitors can be
seen in the general view at the back of the photograph, and towards the right; a much
better photograph is shown in Fig. 2c. The left monitor in this photograph shows the
contents of the counter (a kind of internal clock). The right monitor shows the
Sequence Control Register (now usually known as a P-register). The centre monitor
shows the 32 words in a long tank - just one of the main memory tanks could be
displayed at any time, as determined by a rotary switch. Three more CRT tubes,
which are not shown here, displayed the rest of the processor registers - the Order
Tank (which held the current instruction), the Accumulator, and two multiplication
registers. The monitor tubes were a very important way of observing the progress of a
program and debugging it - although this was time consuming, so that software
debugging aids were soon invented (of which more in Section 4).

The EDSAC was controlled by five push buttons: Start, Stop, Clear, Reset, and Single
E.P., whose purpose is self-evident except for the last. The Single E.P. button caused
a single instruction to be obeyed, which enabled a program to be executed one
instruction at a time.

The EDSAC was a research machine rather than a production model, so it tended to
be enhanced from time to time. For example, initially only 512 words of memory
were provided; this gradually built up to 1024 words as all 32 long tanks were got
working. The Clear button was another early addition - at first, the memory had to be
cleared by earthing the electrical terminals with a wet finger! Another improvement
was the addition of a rotary dial which enabled a single decimal digit to be input by
the machine operator. The version of EDSAC provided by the simulator corresponds
to the machine which existed during 1949-1951, and it is compatible with all the
software developed during that period

Now we can get back to Fig. 1b, which shows the simulator display. The top-left of
the display represents the main-memory monitor tube. In this display, a binary “one”
is represented by a bright spot and a “zero” by a single pixel - the appearance of this
display conforms very closely to that of the original machine. The panel at the bottom
left of the display shows in a slightly stylized form the five registers, or short tanks,
that were useful to programmers: the Sequence Control Register, the Order Tank, the
Multiplier and Multiplicand registers, and the Accumulator. In the register panel there
is a check box labelled Short Tanks, which can be used to turn the register displays on
or off, and a control labelled Long Tank which can be used to select the memory tank
displayed on the monitor tube.

- 7 -

(a) Edsac folders

(b) Simulator running the squares program

Fig. 1 Edsac simulator

- 8 -

 (a) A photograph of the EDSAC taken shortly after its completion in May 1949. The left three-quarters of the
picture shows the main racks of the arithmetic unit, control and memory. The input-output equipment (a
paper-tape reader and teleprinter) can be seen on the table towards the right. Three of the monitor tubes can
be seen to the rear and right of the picture. The EDSAC operated at a speed of approximately 600
operations per second.

(b) Mercury delay lines or “long tanks” for
the main memory, with M. V. Wilkes
looking on. The battery of 16 tanks shown
here had a capacity of 512 words - the
equivalent of a little over 1 Kilobyte.

(c) EDSAC monitor tubes showing: left, the Counter; centre,
the 32 words in a long tank; right, the Sequence Control
Register.

Fig. 2 The EDSAC environment

- 9 -

In the bottom right is the telephone dial input. Immediately above this is a clock
which shows the time in minutes and seconds that Edsac has been running - not in
real time, but the time that the original EDSAC would have taken to do the identical
computation. The clock can be used to time programs; and the speed that the hands
sweep around the face gives a good feel for the degree to which time has been
speeded up or slowed down by the simulator.

A note about authenticity is called for here. On the original EDSAC the displays
were, of course, always live; but on the simulator generating all the displays produces
a massive computational overhead owing to the bit-by-bit simulation and updating the
screen. So that the simulator can run at an acceptable speed, the register displays can
be turned off to hurry things along. With the register displays turned on, the simulator
normally runs slower than the original machine, but with the displays turned off it
will probably run faster (depending on the capability of your personal computer).
Note that the Long Tank display is updated relatively infrequently compared with the
registers, so that it will not normally significantly affect the performance of the
simulator.

The print-out produced during the running of a program is shown in the text window
at the top right of the display. Although only the last few lines printed are visible in
the window, when the simulator is not running the scroll bar can be used to examine
the full output produced. The accumulated output can be saved permanently by
choosing the “Save Edsac Output As...” option from the File menu. (There is also a
“Punch Edsac Output As...” choice in the File menu. This saves the Edsac output as if
it had been punched onto paper tape rather than printed on the teleprinter. This is
useful if you want the output from one program to become the input of another.) You
can clear the output window by choosing “Discard Edsac Output” from the File
menu.

Finally, in the very centre of the display are the five main control buttons of the
EDSAC: Start, Stop, Clear, Reset, and Single E.P.

1.2 The June 1949 Programs

In June 1949, the EDSAC was demonstrated in public for the first time to the
delegates of a conference on “High-Speed Automatic Calculating Machines”
organized by the Cambridge University Mathematical Laboratory. For the purpose of
this demonstration two programs were run: one printed a table of squares and first
differences, and the other printed a table of prime numbers. We will run the squares
program now, and you can explore the prime numbers program later. It should be
emphasized that these programs - like almost all of the routines supplied with the
Edsac simulator - have not been rewritten, but are historical artifacts. They have been
sitting in the original conference proceedings since 1949, only awaiting a simulator to
bring them back to life. The Squares program is shown in Fig. 3.

The Squares and Primes programs used a loading program known as Initial Orders 1 -
this was a short program that read the user’s program from paper tape and placed it in
the main memory. To select these initial orders, choose “Initial Orders 1” from the
Edsac menu. (If you pull down the menu a second time you can observe the check
mark confirming the selection.) Now, to run the Squares program, choose Open...
from the File menu. You will find the Squares program in the Demonstration
Programs folder in the Edsac Tapes folder. Note that when the program has been

- 10 -

selected, its name is displayed in the title bar of the output window of the simulator
confirming your choice.

Now, press Clear, and turn on all the register displays by checking the Short Tanks
check box. Ensure Long Tank number 0 is selected. Press the Start button. You will
now see the Initial Orders occupying words 0-31. The display will come to life as the
instructions of the Squares program are read in.

Now, use the Long Tank control to display memory tank number 1. You will see the
instructions of the Squares program being loaded one-by-one into locations 32
upwards. When tank 1 is full, look at tank 2 filling, and so on. Also, have a look at
tank 0 again, and observe the data words in the main memory being changed.
(Program loading is a bit slow on a low-end computers, so turn off the register
displays to speed things up. There is no need to stop the simulator - you can alter the
displays at any time. The clock gives a feel for how fast the EDSAC would actually
be operating.)

Eventually, the Squares program will have been completely loaded and will start
printing out a table of squares and come to a stop (or you can press the Stop button
when you have seen enough).

1.3 The Text Editor

We will now examine the program for the Squares example. Bring the program text
window to the front by clicking on the window, or selecting it from the Window
menu. It should look exactly as in Fig. 3b.

You can have as many text windows open as you like, each one of which will
correspond to a program “tape”. Of course only one tape can be mounted on the
Edsac tape-reader at any time, as indicated by the program name in the title bar of the
Edsac output window; this will normally be the front-most text window - if you want
to change tapes you can do this by bringing the appropriate window to the front .

Fig. 3a shows the original documentation for the Squares program, which includes
comments and layout characters. (You will find program texts corresponding to most
of the demonstration programs and library routines in the Edsac Program
Documentation - see below.) On the program tape, however, comments were omitted,
and no layout characters whatever were used. This meant that tapes were physically
very short; for example, the Squares program would have been only about 3 feet long,
with a few inches of leader tape at either end. On the simulator, new lines and spaces
are ignored and can be used freely to layout programs - this is advisable even though
it is not quite authentic. You can edit program tapes using the usual cut and paste
conventions. There is also a find-and-replace facility, which behaves in a standard
fashion.

(a) Program text, right (b) Program tape, above top

(c) Printout, above middle (d) Flow-diagram, above

Fig. 3 Squares program (June 1949)

PRINT SQUARES

 31  T 123 S   As required by
   initial input

enter → 32  E 84 S  Jump to 84
  

 33  Â P S   Used to keep count
   of subtractions

 34  Â P S   Power of 10 being
   subtracted

 35  Â P10000 S  
 36  Â P 1000 S   For use in the decimal
 37  Â P 100 S   binary conversion
 38  Â P 10 S  
 39  Â P 1 S 
 40  Â Q S 
 41  Â ¹ S  Figures
 42  Â A 40 S 
 43  Â φ S  Space
 44  Â ∆ S  Line feed
 45  Â θ S  Carriage return
 46  Â O 43 S 
 47  Â O 33 S 
 48  Â P S   Becomes number to be

   printed
 94 → 49  A 46 S   Put O 43 S in 65S
 50  T 65 S  
 72 → 51  T 129 S  Clear 129S
 52  (A 35 S)   Put power of 10
 53  T 34 S   in 34S
 54  E 61 S  Jump to 61

  
 63 → 55  T 48 S 
 56  A 47 S 
 57  T 65 S  
 58  A 33 S   To control printing
 59  A 40 S  
 60  T 33 S  
 54 → 61  A 48 S 
 62  S 34 S  
 63  E 55 S  
 64  A 34 S  
 65  P S  
 66  T 48 S  
 67  T 33 S   Print contents
 68  A 52 S   of 48S
 69  A 4 S  
 70  U 52 S  
 71  S 42 S  
 72  G 51 S  
 73  A 117 S  
 74  T 52 S  
 75  (P S)  End print [link]

  

 76  Â P S  Becomes x
 77  Â P S  Becomes x 2

 78  Â P S  Becomes x 2

 79  Â P S  Becomes ∆x2

 80  Â E 110 S 
 81  Â E 118 S 
 82  Â P 100 S 
 83  Â E 95 S 

 
 32 → 84  O 41 S  Set on print figures
 120 → 85  T 129 S  Clear 129S
 86  O 44 S 
 87  O 45 S 
 88  A 76 S  
 89  A 4 S   x+1 to 76S and
 90  U 76 S   48S
 92  A 83 S   Set switch Z
 93  T 75 S  
 94  E 49 S 

  
1: 75 → 95  O 43 S   Double space
 96  O 43 S  
 97  H 76 S  
 98  V 76 S  
 99  L 64 S   x 2. 215 to 77S
 100  L 32 S  
 101  U 77 S  
 102  S 78 S   ∆x2 to 79S
 103  T 79 S  
 104  A 77 S  
 105  U 78 S   x 2 to 48S and print
 106  T 48 S  
 107  A 80 S 
 108  T 5 S 
 109  E 49 S 

  
 2: 75 → 110  O 43 S   Double space
 111  O 43 S  
 112  A 79 S  
 113  T 48 S  
 114  A 81 S   ∆x2 to 48S and print
 115  T 75 S  
 116  E 49 S  
   
 117  Â A 35 S 
 3: 75 → 118  A 76 S  
 119  S 82 S  
 120  G 85 S   Test for finish:
 121  O 41 S  
 122  Z S  

- 12 -

1.4 Help and Documentation

Documentation for the Edsac simulator is supplied as two Adobe Acrobat PDF
(Portable Document Format) files: the Tutorial Guide (EdsacTG.pdf) and EDSAC
Program Documentation (EdsacDoc.pdf). These files can be accessed by double
clicking on the appropriate document icon, or from within the Edsac system through
the Help menu.

The Tutorial Guide is designed as a doubled-sided printed document that opens flat,
for study at or away from your computer. If you prefer, you can access the Guide on-
line using the Adobe Acrobat Reader - hyperlinks in green text have been added for
easy navigation. Pages in the Tutorial Guide use a mixture of paper sizes and
orientations, so don’t forget to use the “Shrink to Fit” print option.

The pages in the Program Documentation pdf file are, for the most part, exact
transcriptions of the original “programme sheets” now preserved in the Cambridge
University archives. If you wish, all or part of the documentation can be printed from
within the Adobe Acrobat Reader for study off-line.

Exercises

1 Edit the Squares program so that it prints out the squares of 1 to 10 instead of 1 to
100. (Hint: Change the constant P 100 S in location 82 to P 10 S.)

2 Load the Primes program. Run the program at full speed by turning off the
register displays, and note how the output slows down as successively larger
integers are tested for primality.

- 13 -

2 EDSAC ARCHITECTURE AND ARITHMETIC

The demonstration programs used in this section, and in the rest of the Tutorial
Guide, make use of the second form of the initial orders which were introduced in
September 1949. These replaced the much less sophisticated Initial Orders 1 which
were only in service for about three months. Choose “Initial Orders 2” from the Edsac
menu and close any text windows that are open.

2.1 Architecture and Instruction Set

One of the nicer features of the EDSAC is that it is conceptually a very simple
machine; certainly, it is much closer to a modern RISC architecture than almost any
machine developed in the 1960s or 1970s. The reason for this simplicity is that when
Wilkes and his team were designing the machine, they chose to keep things as simple
as possible: this was partly to minimize the engineering difficulty, but also so that
they could start developing programs for a real computer as soon as possible, instead
of just dreaming them up for an imaginary machine. Notwithstanding the EDSAC’s
historical importance, its simple design makes the machine a worthwhile one to study
today as a particularly clean example of what has come to be called the “von
Neumann architecture”. (Although, of course, like all real machines, the EDSAC does
have some annoying features that one wishes were not there.)

The original design of the EDSAC was based on that of the EDVAC, the computer
designed during 1944-45 at the Moore School of Electrical Engineering, University
of Pennsylvania, by a group that included John von Neumann, J. Presper Eckert and
John W. Mauchly. The design of the EDVAC was described in von Neumann’s
classic First Draft of a Report on the EDVAC in June 1945. This is the foundation on
which almost all serial-architecture computers have been based for fifty years. The
EDSAC consisted of the classical arrangement of five functional parts: a control unit,
an arithmetic-logic unit (ALU), a memory (or store), input, and output (Fig. 4). The
combined control unit and ALU is now usually known as the processor, and in the
EDSAC processor there were five principal registers: the Sequence Control Register,
the Order Tank, the Multiplicand and Multiplier registers, and the Accumulator. The

OUTPUT

S T O R E

1024 words of 18 bits

CONTROL A L U

Multiplier

Multiplicand
Order Tank

INPUT

 Acc

Sequence Control

Fig. 4 EDSAC architecture

- 14 -

Sequence Control Register is now more usually known as the P-register, and the
Order Tank performs the function of an instruction-decode register.
The EDSAC used a single-address instruction format, shown in Fig. 5. Although the
EDSAC was based on an 18-bit word, only 17 bits were used, the leading bit being
unusable for reasons connected with circuit set-up time. The opcode (or “function”)
was specified in 5 bits, and the address in 10 bits. A further bit specified the operand
length: most instructions could operate on either a 17-bit short word, or a 35-bit long
word; the length indicator specified which. (If you look carefully at the register panel
on the Edsac display, you will notice some tiny black dots beneath the Order Tank:
these indicate the different fields of the instruction.)

 5 1 10 1

Opcode Spare Address Length

Fig. 5 Instruction format

Table 1 (Appendix, p. 39) shows the EDSAC instruction set as it existed in 1949.
Operations were represented by letters of the alphabet, some of which suggested the
function they denoted (eg. A for Add, S for Subtract, etc). The binary representation
of the opcode was in fact the same as the character code of the corresponding
character - see Table 2; this simplified the translation of the symbolic program
considerably. Average instruction times were 1.5 ms, although multiplication was
longer and took 6 ms; input-output times were determined by the basic speeds of the
peripheral equipment.

Instructions were always written in a symbolic form such as A 56 F, or S 128 D;
these meant respectively, “Add the short number in location 56 into the accumulator”,
and “Subtract the long number in location 128 from the accumulator”. Note the use of
the length indicators F or D to specify a short or long operand in the instruction. Also,
when an address was zero it was omitted altogether; for example, T F meant “Store
the short number in the accumulator in location 0”.

2.2 Numbers and Arithmetic

In this section we will examine the details of number storage and arithmetic on the
EDSAC. It is not important that you follow everything in the description that follows
- you can always come back later for exact details if you need them.

Modern software systems tend to shield the user from any direct dealings with the
basic arithmetic instructions of a computer, and often from the format in which
numbers are stored - other than the basic word length and the type of data (integer,
floating-point, etc). However, on the EDSAC it was necessary to have a fairly
intimate understanding of the formats of numbers, and the instructions which
operated on them. An additional complication was that floating point numbers were
not used; instead, real numbers were stored as fractions in the range -1 < x < 1. (If a
number of modulus greater than unity was needed, then scaling had to be used - more
on this later.)

- 15 -

Fig. 6 shows the four number formats used in the EDSAC: short and long integers,
and short and long fractions. Short numbers were 17-bits in length and long numbers
were 35-bits. (Remember that the basic word length of the EDSAC was 18 bits, but
the first bit was never used.) Within the processor, the multiplication registers each
had a capacity of 35 bits; and the accumulator had a capacity of 71 bits - sufficient to
develop the full product of a pair of long numbers. When using short numbers only
the leftmost half of the registers would be used. (The black dots beneath the
arithmetic register displays indicate the boundaries of short and long numbers and
their signs.)

The Arithmetic program (Fig. 7) does not do anything useful, but it is designed to
illustrate EDSAC number storage and arithmetic. Open... the program from the
Demonstration Programs folder; press Clear and then Start to load the program into
the store. The first instruction of the program (in location 64) is a stop-order, so that
when the program has been loaded, you can turn on the registers display, and then
work through it by single stepping using the Single E.P. button. (If the program failed
to load, check that you selected Initial Orders 2 correctly.) Points to note in the
program are as follows.

Integers were normally stored in a 17-bit word, in twos-complement form, with the
leftmost bit for the sign, and the implied binary point at the rightmost end. Thus:

 33 = 00000000000100001
-17 = 11111111111101111

Although it was possible to have long integers, these will not be used here.

(c) short fraction

(d) long fraction

(b) long integer

(a) short integer

16

16 17

16

16 17
•

•

•

•

= sign = sandwich digit

 • = implied binary point

KEY:

Fig. 6 Number formats

- 16 -

Short fractions were stored in a 17-bit word, in twos-complement form, with the
leftmost bit for the sign, and the implied binary point between the sign bit and the
most significant numerical bit. Thus:

 0.375 = 3/16 = 00011000000000000

 -0.5 = -1/2 = 11000000000000000

Easy constants like the above were set up in programs by symbolic orders which
caused the appropriate bit pattern to be assembled (there were no constant defining
operations). For example: P 16 D for the integer 33, and E F for the fraction 3/16.

Addition and subtraction work exactly as you would expect, except for overflow.
Overflow in the accumulator is not detected, and the program will just go on running,
working with whatever number the accumulator happens to contain. Multiplication is
more complicated. The multiplier was designed to give the correct product with
fractions. Thus the product of two short 17-bit fractions is a long 35-bit fraction.
Depending on the precision required, either the top 17 bits or the top 35 bits of the
accumulator are stored (using a T n F or a T n D order respectively). When integers
are multiplied, the multiplier behaves in the same way it would with fractions. For
example, since the integer 5 (say) is equivalent to the fraction 5 x 2-16, the product of
5 x 5 would be 25 x 2-32. Hence to obtain the result in the correct place in the
accumulator, it would have to be left-shifted 16 places.

In the memory, long numbers are stored in an adjacent pair of odd-even locations.
The word length is 35 bits, not 34 bits: the extra bit between the two half-words is the
so-called “sandwich digit”, which caused some confusion with EDSAC users, but the
existence of the subroutine library meant that most of the time people did not need to
trouble about it. Long constants are set up by a pair of orders, such as H 682 D,
T 682 D for 1/3. These constants were messy to work out, and useful ones were
published from time to time in the EDSAC Programming Bulletins. A selection of
useful constants is given in Table 6 of the Appendix. When referring to a storage
location, the notation 24D (say) means the long number in locations 25 and 24.
Similarly the notation nF means the short number in location n.

Exercise

1 Single step through the Arithmetic program, observing the contents of the
accumulator as each instruction is obeyed and comparing it with the program
listing in Fig. 7. This will familiarise you with the various number formats used in
the EDSAC.

2.3 Miscellaneous

The EDSAC instruction set in Table 1 (p. 39) is fairly self-evident to anyone with a
reasonable computer understanding, but a few pointers may be in order.

One of the compromises made to keep the EDSAC simple was to have only two
branch instructions, the E- and G-orders. There was no unconditional branch
instruction, so that it was always necessary to know the sign of the accumulator when

- 17 -

 T 64 K  Set load point
 64  Z F  Stop
 65  A 96 F  acc = 33 
 66  A 97 F  acc = acc + 46 = 79  Short integer
 67  S 98 F  acc = acc - 96 = -17  arithmetic
 68  T F 
 69  H 100 F   acc = 3/ 16 x 7/ 8 = 21/ 128  Short fractions
 70  V 101 F   
 71  T F 
 72  H 104 D   acc = 1/ 3 x 1/ 3 = 1/ 9 
 73  V 104 D    Long fractions
 74  Y F  Round acc to 34 binary places 
 75  A 106 D  acc = acc - 1/ 9 = 0 to 34 b.p. 
 76  T F 
 77  H 99 F   acc = (5 x 2 -16) 2 = 25 x 2 -32 
 78  V 99 F    Integer
 79  L 64 F   acc = acc x 2 -16 = 25 x 2 -16  multiplication
 80  L 64 F   
 82 → 81  L D   Left shift till acc -ve 
 82  E 81 F   
 87 → 83  R D   
 84  R D    Shift operations
 85  R D   Pretty pattern 
 86  S 103 F   
 87  G 83 F   

 T 96 K  Set load point
 96  Â P 16 D  = 33 
 97  Â P 23 F  = 46  Integer constants
 98  Â P 48 F  = 96 
 99  Â P 2 D  = 5 
 100  Â E F  0.0011 2 = 3/ 16 
 101  Â K F  0.1110 2 = 7/ 8  Short fractions
 102  Â ∆ F  1.1000 2 = - 1/ 2 
 103  Â I F  0.1000 2 = 1/ 2 
 104  Â H 682 D   0.0101... = 1/ 3 
 105  Â T 682 D    Long fractions
 106  Â K 455 F   0.111000... = - 1/ 9 
 107  Â C 455 F   

 E 64 K   Enter at location 64
 P F  

Fig. 7 Arithmetic program

- 18 -

taking a branch (or else to use both an E-order and a G-order). The same limitation
meant that it took 8 instructions (!) to determine the equality of two numbers - so this
was avoided if at all possible. In 1952, an unconditional branch order was added to
overcome these problems. (Unfortunately this change also meant that many programs
and library subroutines had to be rewritten - this happened whenever the instruction
set was significantly changed. This is why it was earlier stated that the simulator
models the EDSAC as it existed in 1949-51.)

Another economy in the EDSAC was that it had no hardware divider. Hence division
had to be done by a subroutine (see the Reciprocals program in Section 3.3, for an
example). The logic operations on the EDSAC were particularly sparse. Only logical
AND (the Collate order) was provided. Likewise, there were no instructions for
character handling. This is really a reflection of the fact that machines of the
EDSAC’s era were designed as “mathematical instruments”. It was only in the late
1950s that powerful logic and character-handling instructions became available on
most computers.

The shift instructions probably gave more trouble to users than any others. This was
because, to simplify the engineering, the number of shift positions was given not by
the value of address field of the instruction but by the position of the rightmost bit in
the instruction word. Thus the instruction L 8 F caused the contents of the
accumulator to be shifted 5 places left, and not 8 places, as you might expect.

Finally, an interesting feature of the EDSAC and many of its contemporaries was that
they had no index registers - not least because the index register was not invented
until 1950, and then the idea took a little time to catch on. To perform arithmetic on
the elements of an array on the EDSAC it was necessary for a program to modify the
addresses in its own instructions, so that in an instruction loop successive elements of
the array would be accessed. The ability of an electronic computer to modify its own
instructions was one of the key features of the stored-program concept, although we
now tend to frown on such “impure” code.

Exercises

1 Reload the Arithmetic program by pressing Clear and then Start. Run the program
at full-speed by pressing Reset instead of the Single E.P. button. It finishes by
using shift instructions to generate a distinctive pattern in the accumulator. Ensure
you can understand what is happening.

2 The instructions R D and L D shift the accumulator one place right and one place
left respectively. The instructions R F and L F cause a right shift of 15 places and
a left shift of 13 places, respectively. Why?

- 19 -

3 PROGRAMMING THE EDSAC

In this section we will examine three programs which will progressively illustrate all
the important features of programming for the EDSAC. It is strongly recommended
that you “punch” and run the first two programs so that you get familiar with using
the system before attempting to write the programs in Section 5. Working copies of
all the programs are provided in the Demos folder in case you get stuck.

3.1 Hello World

This is not exactly an original idea, but as a confidence builder, our first example is a
tiny program to print a message. However, as printing “Hello World” would make the
program rather longer than necessary, the program will just type “HI”. The complete
program is shown in Fig. 8.

Fig. 8a shows the program text. In the program, there are two types of entity: actual
machine instructions, which are numbered 0 to 7; and “control combinations” at the
beginning and end of the program. Control combinations correspond to what we
would now call “assembly directives”: they are pseudo-instructions for the Initial
Orders so that they can load the program and enter it.

This is the place to say a little more about Initial Orders 2. Once the Cambridge group
began programming using the first form of the initial orders in the spring of 1949,
their limitations soon became apparent. The worst feature by far was that addresses in
instructions had to be coded in absolute form: this meant, for example, that if an extra
instruction had to be inserted in a program then the addresses in many of the branch
instructions would need to be altered. This made program debugging very tedious.
Another problem was that the lack of a relocation facility meant it was difficult to
organize a subroutine library effectively.

The task of devising a new set of initial orders was given by Wilkes to David
Wheeler, then a research student and now Professor of Computer Science at
Cambridge. What he produced was the forerunner of the modern assembler. The new
programming system was later described in the classic textbook The Preparation of
Programs for an Electronic Digital Computer (Wilkes, Wheeler and Gill, 1951).
This famous book - usually known as Wilkes, Wheeler and Gill; and often abreviated
as “WWG” - established the programming culture of the early 1950s, which is still to
some extent embodied in the assembly systems and subroutine libraries of today’s
computers. When designing the new initial orders, one of the constraints that Wheeler
had was that, for engineering reasons, the initial orders were limited to being just 42
instructions long. But even so, their power was quite astonishing and at the time they
were justly celebrated as “the leading example of programming virtuosity”. (If you
are interested, you can find copies of the program manuscripts for both Initial Orders
1 and Initial Orders 2 in the Edsac Documentation .pdf file)

In the Tutorial Guide we will by no means exhaust the possibilities of Initial Orders
2, which are fully described in Wilkes, Wheeler and Gill; we will just use the basic
control combinations below:

T m K Set the load point to m

G K Set the θ-parameter to the current load point

- 20 -

T Z Restore the θ-parameter

E m K P F Enter the program at location m

E Z P F Enter the program at location θ
P Z or P K See later

The Hello World program in Fig. 8a uses three of these control combination. The
program begins with T 64 K, which causes instructions to be loaded into location 64
upwards. (This would correspond to something like “ORG 64” in a modern
assembler. It is true that the latter is a more helpful notation than T 64 K, but this
shortcoming was entirely due to the space constraints of the initial orders.) On the
next line, G K sets the θ-parameter - which is used for relocation - to the current load
point of 64. From this point on, the address in any instruction with the code-letter θ
will have the value of the θ-parameter (ie. 64) added to it. This is how relocation is
achieved. Finally, the last control combination E Z P F causes the program to be
entered at location θ (ie. 64). Note how the program is completely relocatable: just
changing the number 64 in the first line of the program will allow it to be placed
anywhere in the store.

Let’s now turn to the instructions themselves. Notice that the first instruction is a
stop-order; and that the program has been located from word 64 onwards, ie. at the
edge of a memory tank boundary. This was a common practice when developing
programs so that it was possible to check visually in the monitor tube that the
program had loaded correctly before running it; locating the program on a page
boundary made it easy to find (by comparison, word 56, say, was quite difficult to
locate on the monitor, other than by counting up the rows of the display).

Fig. 8b shows the program “tape” exactly as it should be typed - no comments or
extraneous characters other than white space characters. The EDSAC tape punch used
four Greek characters: theta, phi, delta, and pi. These characters are typed as below:

EDSAC character Type As

Theta θ @
Phi φ !
Delta ∆ &
Pi π #

We will now type the Hello World program. First, select New... from the File menu
to create a new text window. Type the program, exactly as in Fig. 8b. If you wish,
you can give the program a name and keep it permanently in the Application
Programs folder by saving it in a file named “My_Hello” (say). You can now run the
program. Turn on the Short Tanks display, and press Clear followed by Start. After a
few seconds the simulator will stop - ringing the warning bell as it does so. Examine
Long Tank 2 to verify that the program has loaded correctly. It should look exactly as
in Fig. 8c. Press Reset. The program should print “HI”, and then stop - again ringing
the warning bell.

If your program fails to load correctly, and you get the alert "End of input tape
encountered", check that you have selected Initial Orders 2 on the Edsac menu.

- 21 -

 T 64 K  Load from location 64
 
 G K  Set θ parameter
 

Start → 0  Z F  Stop
 

 1  O 5 θ  Print letter shift
 

 2  O 6 θ  Print "H"
 

 3  O 7 θ  Print "I"
 

 4  Z F  Stop
 

 5  Â * F  Letter shift
 Â 

 6  Â H F  "H"
 Â 

 7  Â I F  "I"
 
 E Z  
   Enter at location 0 θ
 P F  

T64K

GK

ZF

O5@

O6@

O7@

ZF

*F

HF

IF

EZPF

(a) Program text (b) Program tape

location order location order
71 I F 70 H F
69 * F 68 Z F
67 O 71 F 66 O 70 F
65 O 69 F 64 Z F

(c) Long Tank 2

 = 00010.010 2
 = tank2.word2 = 66 10

 = 01001.00001000110.0
 = O 70 F

 (d) Sequence Control Register and Order Tank

Fig. 8 Hello World program

- 22 -

If your program loads but fails to run correctly, it is probably because you mis-typed
something. EDSAC was very unforgiving of typos - particularly Ohs punched as
Zeroes, so check very carefully. If you still can’t get the program to run, there is a
working version in the Demonstration Programs folder.

Press Clear and Start to reload the program. Now, instead of clicking Reset, press
Single E.P. repeatedly to step through the program one instruction at a time. Notice
(Fig. 8d) how the Sequence Control Register steps through 64, 65, 66, ... The last
instruction of the program is in 68. Of course if you carry on pressing Single E.P. the
machine will execute nonsense instructions - but since the EDSAC was designed so
that non-existent opcodes behaved as stop instructions, nothing very exciting usually
happens. Note that only legal stop instructions (using the Z-order) ring the bell.

Exercises

1 Modify the Hello World program so that it is loaded into location 56 upwards,
and verify on the monitor tube. If you try to load the program from 32 upwards,
strange things happen. Why is this?

2 Modify the Hello World program so that it does indeed print “HELLO WORLD”.

3.2 Cubes

The next program is one that calculates and prints the cubes of the integers using the
well known formula of Nichomacus:

13 = 1

23 = 3 + 5

33 = 7 + 9 + 11

43 = 13 + 15 + 17 + 19

etc.

The coding to compute the cubes themselves is fairly trivial; the difficulty lies in
actually printing them out. The easy way to do this is to use the library subroutine P6,
which prints a short positive integer (Fig. 9).

The EDSAC subroutine library began to take shape from autumn 1949 onwards.
Subroutines were classified by a letter indicating the group to which they belonged
(eg. D for division, P for printing, etc.) Within a group, subroutines were given a
serial number (eg. P1, P2, P3, etc.), which mainly indicated the chronological order in
which routines had been placed in the library. Eventually the library grew to contain
nearly a hundred subroutines. However, only about two dozen are provided for the
Edsac simulator - the program “tapes” are kept in the Subroutine Library folder, and
brief specifications for the more popular ones are given in Table 3 of the Appendix.
Original documentation for all the subroutines is reproduced in the Edsac
Documentation pdf file. These subroutines will suffice for all the examples given in
this Tutorial Guide, and for most of the programs you are likely to think of. If you
decide to explore the EDSAC in more depth, you may need more subroutines; many
of these are readily accessible in Part III of Wilkes, Wheeler and Gill (1951).

- 23 -

P6 Print short positive integer .
 Closed; 32 storage locations; working positions 1, 4, and 5; time =
 about 900 msecs.

Prints 2 -16. C(0) with suppression of nonsignificant zeros but without layout.

 G K 
 0  A 3 F   Plant link
 1  T 25 θ  
 2  H 29 θ  
 3  V F   Multiply by 2 16/10 5

 4  T 4 D  
 5  A 3 θ   V F = -1/16 to S(0)
 6  T F  
 7  H 30 θ  Set multiplier
 8  S 6 θ  Set digit count
 24 → 9  T 1 F  Digit count 
 10  V 4 D   Multiply 
 11  U 4 D   
 12  A F   Test for first 
 13  G 26 θ   non-zero digit 
 14  T F   Clear Acc. and S(0)* 
 15  T F   
 16  O 5 F  Print  Digit cycle
 17  A 4 D   
 18  F 4 F   Check and remove 
 19  S 4 F   
 28 → 20  L 4 F  Shift 
 21  T 4 D  
 22  A 1 F   
 23  S 3 θ   Count digits 
 24  G 9 θ   
 25  (E F)  Link

  
 13 → 26  S F  Add 1/16 
 27  O 31 θ  Space  Suppress zero
 28  E 20 θ  

  
 29  Â J 995 F  = 2 16/10 5

 30  Â J F  = 10/16
 31  Â φ F  Space

* S(0) becomes cleared when the first non-zero digit is encountered, thus
preventing the suppression of later zeros.

 (a) Program text, above

 (b) Program tape, left

Fig. 9 Library subroutine P6

- 24 -

Calling a subroutine on the EDSAC used the technique of the “Wheeler jump”,
shown below. Here, the instruction A m F loads itself into the accumulator (this will
be used to form the return link); and then the instruction G n F transfers control to the
first instruction of the subroutine in location n. In the subroutine, the instructions
A 3 F and T p F manufacture the return link and plant it as the last instruction of the
subroutine in location p. (The instruction A 3 F actually uses a constant permanently
kept in location 3 to produce the return link.) If all this went over your head on a first
reading, don’t worry; it is only really important when you want to write subroutines.
If you are just going to use library subroutines, all you need to remember is the
A m F, G n F calling sequence.

 m  A m F  pick up self 
   
 m+1  G n F  jump to subroutine  master routine
   
 m+2  .  control returns here 
  
  . 
  
  . 
  
 n  A 3 F  form return link 

  
 n+1  T p F  plant return link 
   
  .   subroutine
   
  .  
   
 p  (.)  return link planted here 

Fig. 10 shows the Cubes program. It consists of two routines: the master routine
written by the programmer (Fig. 10a), and the library subroutine P6. The first job is
to allocate storage for the program; this is done in Fig. 10b. The convention was to
load the program into location 56 upwards, placing all the subroutines and the master
routine end-to-end without leaving any gaps. The lengths of subroutines are given in
their specifications. Fig. 10c shows the make-up of the complete program tape.

On the original EDSAC, the procedure for punching a program was as follows (Fig.
11). First, the key-punch operator (who was usually the same person as the
programmer) would punch the master routine. Then the subroutine library tapes -
which were kept in small cardboard boxes in a steel filing cabinet - would be copied
onto the program tape, together with the master routine, and interspersed with control
combinations. When the subroutine tapes had been copied, they were rewound and
returned to the library cabinet. On the program tape the individual routines were
normally separated by a few rows of blank tape; this was useful in spotting how far
the program had got if it suddenly stopped loading - the machine operator would
mark the tape with a pencil where it had stopped in the paper-tape reader. This blank
tape is indicated by “space” in the notation for the make-up of program tapes (Fig.
10c). The blank tape has to be terminated with the control combination P K or P Z.

 G K  Set θ-parameter
 Enter → 0  Z F  Stop
 1  O 29 θ  Figure shift
 22 → 2  O 30 θ   New line
 3  O 31 θ  
 4  A 23 θ   k to 0F
 5  T F  
 6  A 6 θ   Print 0F using P6
 7  G 56 F  

  
 P6 → 8  T 23 θ  Zero to k
 9  A 24 θ  
 10  A 27 θ   n+1 to n
 11  T 24 θ  
 12  S 24 θ   -n to count
 21 → 13  T 26 θ  
 14  A 25 θ  
 15  A 28 θ   m+2 to m
 16  U 25 θ  
 17  A 23 θ   k+m to k
 18  T 23 θ  
 19  A 26 θ   Increment count
 20  A 27 θ  
 21  G 13 θ  Jump to 13 if count ² 0
 22  E 2 θ  Repeat main cycle

  
 23  Â P D  k (n 3; =1 initially)
 24  Â P D  n (=1 initially)
 25  Â P D  m (=1 initially)
 26  Â P F  count
 27  Â P D  =1
 28  Â P 1 F  =2
 29  Â π F  figs
 30  Â θ F  cr
 31  Â ∆ F  lf

(a) Master routine


Routine Location of Number of storage
 first order locations occupied

P6 (print) 56 32
Master 88 -



(b) Table of routines

 space P K

 T 56 K

 P6

 space P Z

 Master

 E Z P F

(c) Make-up of program tape

 1
 8
 27
 64
 125
 216
 343
 512
 .
 .
 .

 (e) Printout

 Fig. 10 Cubes program

 [Cubes]
..PK
T56K
[P6]
GKA3FT25@H29@VFT4DA3@TFH30@S6@T1F
V4DU4DAFG26@TFTFO5FA4DF4FS4F
L4FT4DA1FS3@G9@EFSFO31@E20@J995FJF!F
..PZ
[Cubes Master]
GK
ZF
O29@
O30@
O31@
A23@
TF
A6@
G56F
T23@
A24@
A27@
T24@
S24@
T26@
A25@
A28@
U25@
A23@
T23@
A26@
A27@
G13@
E2@
PD
PD
PD
PF
PD
P1F
#F
@F
&F
EZPF

 (d) Program tape

- 26 -

Much the same logic is used for preparing programs for the simulator. On the Edsac
simulator, because an application program such as Cubes is composed from two or
more files, and will likely exist in a number of versions, it is advisable to create a new
folder for it. A folder for Cubes has already been set up for you in the Application
Programs folder. Normally the first job would be to punch the master routine, but this
has also been done for you; it is in the file “Cubes Master” in the Cubes folder.

We now have to create the complete program from the library subroutine and the
master routine. First, create a New… text window in which to prepare the program.
Now, referring to Fig. 10c, we first need to type the control combinations:

space PK

T 56 K

We require at least two rows of blank tape for the “space”; on the Edsac simulator a
row of blank tape is represented by a period, so we can represent “space” by “..”. The
rest of the characters (PKT56K) are typed as written. We then need to copy
subroutine P6. Choose Insert… from the File menu, and select P6 from the
Subroutine Library folder. P6 will now be copied into your file at the current
insertion point. Now type the control combination “space P Z”, and Insert… Cubes
Master; finally type the control combination E Z P F to enter the program. Save the
program as “Cubes”. (If you prefer you can construct your program by opening
windows for the various components and cutting and pasting from one to another.
This is messier but the end result will be the same.)

Program tapes for the EDSAC were blind punched using a keyboard perforator. Library subroutines
were kept in the steel cabinet (left) and were copied mechanically onto the program tape using the
tape-reader in the centre of the photograph.

Fig. 11 EDSAC tape preparation facilities

- 27 -

Your program should look exactly as in Fig. 10d - except possibly for white space
characters and comments. A few points to note. First, the simulator allows you to put
comments in the program between square brackets. The convention adopted is to
label all program tapes and library subroutines with their name at the beginning, eg.
[P6]. This roughly corresponds to the practice adopted on the original EDSAC of
labelling a tape by writing the name of the program on it in pencil. Secondly, notice
that the master routine is typed one instruction per line, while the subroutines have
been previously typed with ten instructions per line. This convention is adopted to
keep program listings short - when the program is actually run there is no difference
whatever so far as the simulator is concerned. The master routine is typed one order
per line to make it easy to correct while it is being debugged; but library subroutines
can be assumed to be correct and you should never need to modify them, so they are
typed ten orders per line.

You should now be able to run the program. Again, if it fails to run, it may be
because you mis-typed something, or perhaps you composed the program incorrectly.
Alternatively, perhaps you forgot that the first instruction of the master routine was a
stop order and you need to press Reset to make it continue. If you still have problems,
there is a working version of the program in the Demonstration Programs folder.

Exercise

1 Modify the Cubes program so that it prints out n followed by n3 on each line.

3.3 Reciprocals

This section illustrates the remaining important concepts in EDSAC programming:
code-letters, subroutine parameters, and scaling. To illustrate these ideas, we will
refer to the Reciprocals program which prints the reciprocals of the numbers 1-10
(Fig. 12).

Code-letters

If you did the last exercise, which involved modifying the Cubes program, you will
have discovered an awkward problem: Namely that inserting extra instructions in the
master routine required you not only to change the addresses in some branch
instructions (which you might have expected), but also because the locations of the
data and constants changed, the addresses in many of the arithmetic instructions had
to be altered too. This problem can be overcome by the use of code-letters. We have
already encountered three code-letters (F, D, and θ), but there are 15 altogether as
shown below.

Code-letter Location Value
F 41 0
θ 42 Origin of current routine
D 43 1
H, N, M … V 44, 45, 46 … 55 For use by programmer

As the initial orders load each instruction, the value corresponding to its code-letter is
added to the instruction before it is placed in the memory. Because the code-letters F
and D contain the integers 0 and 1 respectively, this has the effect of setting the
length indicator bit accordingly. Similarly, the code-letter θ has the effect of adding

- 28 -

the origin of the current routine to the address of the instruction - this is how
relocation is achieved. You should not normally change F, θ or D directly, for
obvious reasons. All the remaining code-letters can be used by the programmer. The
parameters occupy locations 41 to 55, and that is why the normal place to begin
loading a program is location 56. (The 15 code-letters also correspond to characters
17-31 in the collating sequence - see Table 2 in the Appendix.)

In the master routine of the Reciprocals program, the code-letters θ and M have been
used so that there are two separate regions in store: one region for the instructions and
another for the data. Now, if it subsequently proved necessary to remove or add an
instruction in the master routine it would only be necessary to adjust the value of the
M-parameter. Regionalizing the instructions and data in this way also makes
programming easier because it is not necessary to know the length of the program
before allocating storage for the data.

Subroutine Parameters

Library subroutines had a number of ways of specifying their parameters or
arguments. The easiest way was to use a dedicated storage location. This is used, for
example, in the print subroutine P6, which prints the integer placed in location 0F
before the subroutine is entered; similarly, the division subroutine D6 sets 0D to the
value of 0D/4D. A more flexible, though more complicated, arrangement was what
the Cambridge group called program parameters. Here one or more parameters were
specified in the calling sequence itself. For example, in the Reciprocals program the
library subroutine P1 prints the long fraction in 0D to n decimal places, where n is
specified as a program parameter (see lines 11 to 13 of the master routine in Fig.
12a).

Program parameters are the way that most software systems still parameterize library
subroutines. Incidentally, in Wilkes, Wheeler and Gill, there is another technique
known as “preset parameters” - this method has since fallen into disuse and we will
not discuss it here. But it is one of several now-forgotten ideas in EDSAC
programming awaiting rediscovery. (Just to add a little more confusion, note that
subroutine M3 used in Reciprocals does not conform to any of the types discussed
above. It prints out the text that follows it, and is then overwritten by the program
proper, so as not to take up any memory at run time. It was very useful for printing
out table headings and the like.)

Scaling and Rounding

The problem of scaling arises because the EDSAC could only store fractions in the
range -1 < x < 1. This was a problem with most early computers, although the advent
of hardware or software floating-point in the mid-1950s meant that most users were
soon able to forget about it.

In the case of the Reciprocals program, the reciprocals 1/2, 1/3, ... 1/10 are all in the
range -1 < x < 1, so there will be no need to scale the results. The denominators 2, 3,
... 10, however, would be out of range for fractions. We therefore scale them by 2-4,
so that they are all of modulus less than unity. Now, when we calculate the reciprocal
1/n using:

 G K 
 T 47 K   Set M parameter
 P 21 θ  
 T Z 

 0  S 1 M   Set count to -9
 19 → 1  T 6 M  
 2  A 2 M   1 . 2-4 to 0D
 3  T D  
 4  A 7 M   n . 2-4 to 0F
 5  T 4 D  
 6  A 6 θ   Set 0D to 0D/4D(ie. 1/n)
 7  G 56 F   using subroutine D6

  
 D6 → 8  O 3 M   Output new line
 9  O 4 M  
 10  O 5 M  Output decimal point
 11  A 11 θ   Print 0D
 12  G 92 F   using subroutine P1

  
 13  P 10 F  Parameter for P1
 P1 → 14  A 7 M  
 15  A 2 M   Increment n
 16  T 7 M  
 17  A 6 M   Increment
 18  A M   and test counter
 19  G 1 θ  

  
 20  Z F  Stop

 
 M O  Â P D  = 1
 1  Â P 4 D  = 9
 2  Â Q F  = 1 . 2-4

 3  Â θ F  carriage return
 4  Â ∆ F  line feed
 5  Â M F  decimal point
 6  Â P F  count
 7  Â W F  = n (=2 . 2-4 initially)

(a) Master routine

space P K

T 56 K

 M3

θ∆*RECIPROCALSθ∆π Table heading

space P Z

T 56 K

 D6

space P Z

 P1

space P Z

 Master

E Z P F

(c) Make-up of program tape

 Fig. 12 Reciprocals program


Routine Location of Number of storage
 first order locations occupied

D6 (divide) 56 36
P1 (print) 92 21
Master 113 -


(b) Table of routines

RECIPROCALS

.4999999999

.3333333333

.2499999999

.2000000000

.1666666666

.1428571428

.1249999999

.1111111111

.0999999999

(d) Printout

- 30 -

1 x 2-4

n x 2-4

the scale factors cancel and the result is correct. Life was not always so easy and often
scaling was the hardest part of solving a problem. (For a fuller discussion of scaling
see example program “TPK” in the Documentation pdf file.)

There is a copy of the Reciprocals program in the Reciprocals Folder, in the
Demonstration Programs folder. Note that subroutine P1, like most of the EDSAC
print routines, did not perform rounding. Thus in the output of Reciprocals shown in
Fig. 12c, ½ is printed as 0.4999999999 rather than as 0.5000000000. Here, this is
mainly an aesthetic point, but normally a fraction would be rounded to n decimal
places by adding the constant ½ x 10-n. A number of useful rounding constants are
given in the Appendix, Table 5.

Exercise

1 Modify the Reciprocals program so that it prints the results to a precision of 6
decimal places, unrounded. (Hint: Change the parameter for P6 in line 13).

2 Print the results of the Reciprocals program rounded to 6 decimal places. (NB.
The constant ½ x 10-6 is “W 199 F, P F”; this should be placed in an adjacent
even-odd word pair (eg. words 8M and 9M). To add a long constant into the
accumulator, use A 8 πM (say); the π forces the length bit in the instruction to be
a 1.)

- 31 -

4 DEBUGGING: GETTING PROGRAMS RIGHT

By June 1949 ... I was trying to get working my first non-trivial program, which was for the
numerical integration of Airy’s differential equation. It was on one on my journeys between
the EDSAC room and the punching equipment that “hesitating at the angles of the stairs”
the realization came over me that a good part of the remainder of my life was going to be
spent in finding the errors in my own programs.

M.V. Wilkes, Memoirs, 1985, p. 145

Like Wilkes, everyone who begins to program soon discovers that the difficulty lies
not in writing programs, but in getting them to work. On the EDSAC there were
essentially three ways of finding the mistakes in a program: peeping, the post-mortem
technique, and checking routines. We will look at each of these in turn.

First, however, let us consider the two common types of bug (or “pitfalls” or
“blunders” as they were called in Wilkes, Wheeler and Gill, which was published long
before the term “debugging” gained currency).

1 Control errors. Control or sequence errors occur when the program logic is in
someway faulty. Typically a control error causes a program to have unpredictable
behaviour and eventually come to a halt in an apparently random location. The
most common cause of a control error is a wrong address in a branch order, or
faulty subroutine linkage.

2 Numerical errors. These are errors in the computation of a program, which do not
immediately affect the sequence in which the orders are obeyed. That is to say,
the program apparently behaves well, but the answers are wrong. The most
common causes of arithmetic errors were due to scaling errors and undetected
overflow, or faulty numerical methods.

These two types of errors benefit from different debugging approaches.

4.1 Peeping

In Sections 2 and 3, we single-stepped through a couple of small programs, which
demonstrated most of the salient features of peeping. However, real programs with
subroutines soon show the limitations of the technique.

First, it is quite difficult to navigate around the monitor tube - which is why it makes
sense to locate the origin of the master routine of a program on a tube boundary, and
compact it later for the production version. Second, interpreting addresses and
instructions rapidly and accurately in the Sequence Control Register and the Order
Tank takes a lot of practice; likewise, recognizing binary numbers takes experience.
Third, when the program goes into a subroutine, it get very tedious stepping through a
hundred or more instructions until you can get back to the main program - one way
round this is to plant additional stop orders in the program, so that subroutines can
run at full speed. Finally, when you have located the error, the program text has to be
corrected before it can be re-tested. On some early computers, it was possible to use
hand-switches or crocodile clips to “patch” in corrections, but this was deliberately
made impossible on the EDSAC because it took up so much machine time. The
general philosophy at Cambridge was to use post-mortem and checking routines so
that debugging could be done away from the computer, leaving it free for more
productive work. And, less philosophically, the queue of impatient users waiting to

- 32 -

get on the EDSAC exerted very effective moral pressure on programmers not to
waste machine-time by single-stepping through their programs!

4.2 Post-mortems

A post-mortem - more commonly known in the United States as a terminal dump -
was the process of printing out a region of the memory after the execution of a
program had been terminated. On the EDSAC a post-mortem routine was loaded by
the initial orders in the usual way. (So unless you are pressed for memory space, you
should avoid using locations 0-55 for data storage other than for temporary variables.)
The post-mortem routines themselves were automatically loaded as high up in the
memory as possible, where they were least likely to overwrite the information to be
dumped.

There were six post-mortem routines in the original EDSAC program library, with
the following specifications:

PM0 Starting at location n, print the order-code letter contained in the top five
binary digits of each location; continue until stopped by the operator.

PM1-4 Starting at location n, print the contents of each location as a decimal
number in the following form:

PM1: short fractions

PM2: long fractions

PM3: short integers

PM4: long integers

Continue until stopped by the operator.

PM5 Starting at location n, interpret each word of store as an order and print
the appropriate order; continue until stopped by the operator.

When programs were run on the EDSAC by an operator, the programmer would
leave instructions as to which post-mortem tape to be used in the event of an
abnormal program termination, and the address where the post-mortem was to start -
which was dialled in by the operator.

All the post-mortem routines except PM0 have been written afresh for the Edsac
simulator; unfortunately all the original tapes have long since vanished and there are
no extant listings. They are slightly more user-friendly than the original routines, but
otherwise conform closely to the original specifications. These are the only items in
the Edsac library that are not original artefacts. (Incidentally, the PM0 routine, which
is an original artefact, is a very clever piece of coding that shows what was possible
with the initial orders. It occupies exactly four words of memory.)

To use PM5 (say) proceed as follows. Open… and execute the Reciprocals program
in the usual way. Now, Open… PM5 from the Postmortem Routines folder. Press
Start - without pressing Clear, otherwise you will lose everything. When the program
stops, dial the 3-digit location where you want the post-mortem to start (eg. 113). The
store will now be printed out from word 113 onwards. Press Stop when you have

- 33 -

enough output. If you wish, the output can be saved and printed for study away from
the machine.

Fig. 13 shows part of the P5 post-mortem printout of Reciprocals. Notice how all the
addresses are in absolute form - this quite often makes errors in code-letter usage
immediately obvious. Note also that zero words are not printed, and that order-codes
which correspond to a “stunt” character (shift, line feed, return, etc.) temporarily
upset the alignment of the printout. You will find that PM5 is by far the most helpful
debugging aid you are likely to use. This was not the case on the original EDSAC
because printing on a 62/3 character per second teleprinter meant it took several
minutes to print a substantial region of store; PM0 was much faster, though not so
useful.

 113 S 135 F
 114 T 140 F
 115 A 136 F
 116 T D
 117 A 141 F
 118 T 4 D
 119 A 119 F
 120 G 56 F
 121 O 137 F
 122 O 138 F
 123 O 139 F
 124 A 124 F
 125 G 92 F
 126 P 10 F
 127 A 141 F
 128 A 136 F
 129 T 141 F
 130 A 140 F
 .
 .
 .
 etc.

Fig. 13 Post-mortem using PM5

Exercise

1 Try using PM0. The version of PM0 provided in the Postmortem Routines folder
prints the ordercode letter of each word from location 56 upward. It is easy to
modify the program for another starting-point. Open... the P0 program tape and
see. Modify the program to print from 113 upward - and compare the output
(STATATAGO...) with Fig. 13.

4.3 Checking Routines

The EDSAC pioneered the technique of interpretive trace routines - although the term
“trace” was not then in use, and they were called “checking” routines. Checking
routines were invented by the late Stanley Gill - the third author of Wilkes, Wheeler
and Gill; he was then a research student and was later Professor of Computing
Science at Imperial College, University of London.

The idea of a trace routine is that, instead of obeying the orders of a program directly
by the control circuits of the computer, they are obeyed by an interpretive program or

- 34 -

simulator. It is then possible to print out diagnostic information - ie. a trace - while
the program is being executed. There were several checking subroutines in the
EDSAC library, although just the two provided with the simulator will suit most
purposes. These are subroutines C7 and C10. C7 is useful for checking control errors,
while C10 is most useful for checking numerical errors. Using checking routines
needs a little planning and forethought, but they are very powerful, and once the
technique has been mastered they can be more effective than peeping.

C7: Sequence Checking

C7 prints out the order-code letter of each instruction as it is obeyed. This enables the
flow of the program to be checked against the program manuscript: where control
departs from the expected sequence, then that is where the error lies. A particularly
attractive feature of C7 is that it only interprets code from sections of the memory
designated by the programmer. This enables the tracing of subroutines - which can be
assumed to be correct - to be suppressed, so that the amount of print-out produced is
minimized.

To use C7 on an existing program, we simply replace the final control combination
(usually E Z P F) with C7 preceded by its control combinations. The control
combinations are rather messy, but the scheme shown in Fig. 14a works for simple
cases. There is a copy of Reciprocals with C7 appended in the Reciprocals Folder (in
the file Reciprocals+C7). Fig. 14b shows the print out produced by Reciprocals+C7.

Note how effectively this trace enables you to navigate around the master routine and
to follow its control logic. Note that the subroutine prints a new line after a branch
order, and that a clear line is left whenever instructions are obeyed “silently” (unless
the silent instructions themselves cause printing to occur).

 As in Fig 12c

 .
 .
 .
 space P Z

 Master

 space P Z

 G K T 45 K P F

 P 113 F

 PN ∆θPN

 C7

(a) Make-up of program tape

RECIPROCALS

STATATAG

OO
OMAG
4999999999
AATAAG
TATATAG

OO
OMAG
3333333333
AATAAG
TATATAG

OO
OMAG
2499999999
AATAAG
TATATAG
.
.
etc.

(b) Printout

Fig. 14 Use of checking subroutine C7

- 35 -

C10: Numerical Checking

The C10 subroutine helps to trace numerical errors by printing the contents of the
accumulator (as a long fraction) every time the user program executes a T-order.
Thus the printout will contain all the intermediate results computed in the program.

The C10 subroutine, like C7, is appended to the end of the program, replacing the
final control combination (usually E Z P F). Again, the control combinations are
rather messy. Fig. 15 shows the make-up of the program tape and printout produced
by Reciprocals+C10. Note that the first word is always junk, and that the next three
numbers printed represent -9 (which looks strange when printed as a long fraction.),
1 x 2-4, and 2 x 2-4 respectively. A new line is printed after every branch statement,
and a line feed is output whenever a subroutine is obeyed silently.

 As in Fig 12c

 .
 .
 .
 space P Z

 Master

 space P Z

 GKT45KP37 θP10F

 P 113 F

 PN ∆θPN

 C10

 E 113 K P F

 (a) Make-up of program tape

RECIPROCALS

+7541198730-0001373291+0625000000
+1250000000

.
4999999999+1875000000
-0001220703+0625000000+1875000000

.
3333333333+2500000000
-0001068115+0625000000+2500000000

.
2499999999+3125000000
-0000915527+0625000000+3125000000

.
2000000000+3750000000
-0000762939+0625000000+3750000000
.
.
.
etc.

(b) Printout

Fig. 15 Use of checking subroutine C10

Frankly, the C10 subroutine is quite painful to use, and it was used very much as a
last resort when a numerical calculation would not give exactly the right results.
Numerical errors on the EDSAC could be extraordinarily stubborn. Probably you will
never have occasion to use this subroutine in anger, but it is there should you need it,
and full documentation is given in the Program Documentation pdf file.

- 36 -

5 PROBLEMS FROM THE SUMMER SCHOOL AND ELSEWHERE

If you understood all or most of the material in the Tutorial Guide, you might now
like to try developing an EDSAC program yourself.

Beginning in 1950, the Mathematical Laboratory at Cambridge organized Summer
Schools in programming for people inside the University and for other universities
and industry. The course was of a fortnight’s duration and during that period students
were expected to write and get running some simple programs on the EDSAC.
Programs 1 to 5 below were all Summer School problems. They were all small,
though not trivial, problems; for example they generally need to make use of the
subroutine library, and sometimes scaling is required. The remaining problems are
more challenging.

1 Print the value of the function
n

n+1 for n = 1, 2, ... 10.

2 Read a sequence of 20 long fractions from the input tape and print the sum of
their squares. (Note: Use subroutine R1.)

3 Print the inverse factorials
1
n! , and their sum, of the numbers n = 2, 3, ... 10.

4 Print the sum of
1
n and the sum of

1
n2 for n = 1, 2, ... 100. (Note. The results will

need to be scaled.)

5 A traffic census is to be taken using a tape punched as follows. Whenever a
bicycle passes a B is punched, and whenever a motor vehicle passes a V is
punched. Every minute an M is punched, except at every tenth minute when a T is
punched. At the end of the tape an E is punched. Rows of blank tape, and erase,
carriage return and line feed symbols may appear anywhere. Prepare a program to
process this tape as follows:

(a) Check that, apart from rows of blank tape and erase, carriage return and line
feed symbols, only the symbols B, V, M, T and E appear on the tape;

(b) Check that exactly nine M’s intervene between consecutive T’s;

(c) Print the greatest number of bicycles that pass within any consecutive 15
minutes, and the greatest number of motor vehicles that pass within any 15
consecutive minutes.

[Author: D. J. Wheeler, c.1950]

Note. The above problems are roughly in ascending order of difficulty It is possible to
solve all of them using only the subroutines D6, P1, P6, R1, and S2, whose
specifications are given in Table 5 of the Appendix.

Here are some more substantial problems, not from the Summer School.

6 Library square-root subroutine Write a subroutine S99 for the EDSAC library
which calculates the square root, x, of the argument, a, stored in 0D. Use the

- 37 -

Newton-Raphson iterative formula:

xn+1 =
1
2





xn +

a
xn

Incorporate the subroutine in a driver program which tests it for a variety of
arguments. Note that to keep subroutines in the EDSAC library short, arguments
were not normally validated - bad arguments simply produced bad results.

7 Programmed multiplication test Write a program which will test if the EDSAC
multiplier is functioning correctly (assuming all other machine functions are OK).
On the original EDSAC this test was used to ensure the hardware was serviceable,
but on the simulator it would verify the correct implementation of the multiplier.

9 Pretty printing A program (now lost) was developed in 1953 that would take an
EDSAC tape, and list it in formatted form, one instruction per line. Since the
Greek letters phi, theta, delta and pi could not be printed, they were substituted
with /, *, +, and . (period).

10 Highland dancer A demonstration program, now lost, displayed an animation of
a highland dancer on the main-memory monitor tube. Write a program to produce
an entertaining animation.

11 Sieve of Eratosthenes The sieve of Eratosthenes is used to determine the prime
numbers between 2 and n as follows. Write down the numbers 2 to n; starting at 4
(ie. 2 squared) cross out all the multiples of 2; from 9 (ie. 3 squared) cross out all
the multiples of 3; ignore 4 because it has already been crossed out; from 52 cross
out all the multiples of 5; and so on. At the finish only the primes remain. In
about 1950 Wheeler used this idea to calculate primes on the EDSAC at high
speed by avoiding the operation of division. On the monitor tube “it was possible
to show 16 35-bit words at a time, that is 560 bits altogether. In Wheeler’s
program the ... numbers were represented in order by binary digits. To begin with
all these digits were present. As the sieve operated and numbers were eliminated
the ones were replaced by zeroes. The speed of the machine was such that it was
possible to watch this happening on the screen.” (Wilkes, Nature, October 1975,
p. 544). Write a Sieve of Eratosthenes program to determine the primes between 2
and about 500. Your documentation should include a screen dump of the monitor
tube.

12 The Very First program The first program run on the Edsac on 6 May 1949
printed a table of squares in the form shown below. Unfortunately, the original
program is lost, although several copies of the printout have survived. Recreate
the program, using Initial Orders 1.

 0000 0001 0004 0009 0016 0025 0036 0049 0064 0081
 0100 0121 0144 0169 0196 0225 0256 0289 0324 0361
 0400 0441 0484 0529 0576 0625 0676 0729 0784 0841
 .
 .
 .
 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

If you are in London with time on your hands, you might like to visit the Science
Museum, where this historic printout is on permanent display. Enjoy.

- 38 -

Acknowledgements

The EDSAC simulator is based in part on the work of my former students Martin
Smedley, Ken Fowler, and Paul Waldron. My thanks to John Cowan, Ross Hamilton,
Don Hunter, Lee Wittenberg, and several beta testers who advised on the PC version
of the simulator. Finally my thanks to Maurice Wilkes and David Wheeler, who
supplied me with numerous unrecorded historical details about the EDSAC and its
programming techniques.

Bibliography

If you enjoyed using the simulator and would like to explore EDSAC programming in
more depth, you will need to get hold of a copy of the first edition (1951) of Wilkes,
Wheeler and Gill. This was reprinted by MIT Press in 1982, but is now unfortunately
out of print again; you should, however, be able to find a copy in any major
university library or through inter-library loan. My article “Programming the
EDSAC” (1980) discusses the later development of EDSAC programming and
includes a full bibliography. Another article “The Airy Tape” (1992) describes
Wilkes’s attempt to get his first real program working - and the discovery of
debugging. Something of Wheeler’s programming philosophy can be discovered from
his article “The EDSAC Programming Systems” (1992). Finally, Maurice Wilkes’s
very readable Memoirs are invaluable for understanding the EDSAC milieu.

M. Campbell-Kelly, “Programming the EDSAC: Early Programming Activity at the
University of Cambridge”, Annals of the History of Computing 2 (1980) pp. 7-36.

M. Campbell-Kelly, “The Airy Tape: An Early Chapter on the History of
Debugging”, Annals of the History of Computing 14 (1992), pp. 18-28.

M. V. Wilkes, Memoirs of a Computer Pioneer, MIT Press, 1985.

M. V. Wilkes, D. J. Wheeler and S. Gill, The Preparation of Programs for an
Electronic Digital Computer, 1951, Addison-Wesley. Reprinted as Vol. 1 of the
Charles Babbage Institute Reprint Series for the History of Computing, MIT Press,
1982.

M. V. Wilkes, “The EDSAC”, and B.H. Worsley, “The EDSAC Demonstration”, in
Report of a Conference on High-Speed Automatic Calculating Machines, 22-25 June
1949, Cambridge University Mathematical Laboratory, 1950. Reprinted as pp. 415-
429 of B. Randell, Origins of Digital Computers, Springer-Verlag, 1983.

D. J. Wheeler, “The EDSAC Programming Systems”, Annals of the History of
Computing 14 (1992), pp. 34-40.

39

Appendix of Tables

Table 1 The EDSAC Instruction Set (1949)

A n Add the number in storage location n into the accumulator

S n Subtract the number in storage location n from the accumulator

H n Copy the number in storage location n into the multiplier register

V n Multiply the number in storage location n by the number in the multiplier
register and add the product into the accumulator

N n Multiply the number in storage location n by the number in the multiplier
register and subtract the product from the accumulator

T n Transfer the contents of the accumulator to storage location n and clear the
accumulator

U n Transfer the contents of the accumulator to storage location n and do not
clear the accumulator

C n Collate [logical and] the number in storage location n with the number in
the multiplier register and add the result into the accumulator

R 2n-2 Shift the number in the accumulator n places to the right

L 2n-2 Shift the number in the accumulator n places to the left

E n If the sign of the accumulator is positive, jump to location n; otherwise
proceed serially

G n If the sign of the accumulator is negative, jump to location n; otherwise
proceed serially

I n Read the next character from paper tape, and store it as the least significant
5 bits of location n

O n Print the character represented by the most significant 5 bits of storage
location n

F n Read the last character output for verification

X No operation

Y Round the number in the accumulator to 34 bits

Z Stop the machine and ring the warning bell

40

Table 2 Edsac Character Codes

Perforator Teleprinter Binary Decimal

Letter Figure Letter Figure
shift shift shift shift

P 0 P 0 00000 0
Q 1 Q 1 00001 1
W 2 W 2 00010 2
E 3 E 3 00011 3
R 4 R 4 00100 4
T 5 T 5 00101 5
Y 6 Y 6 00110 6
U 7 U 7 00111 7
I 8 I 8 01000 8
O 9 O 9 01001 9
J J 01010 10
π Figure Shift 01011 11
S S " 01100 12
Z Z + 01101 13
K K (01110 14
Erase1 Letter Shift 01111 15
Blank tape2 (no effect) 10000 16
F F $ 10001 17
θ Carriage Return 10010 18
D D ; 10011 19
φ Space 10100 20
H + H £ 10101 21
N - N , 10110 22
M M . 10111 23
∆ Line Feed 11000 24
L L) 11001 25
X X / 11010 26
G G # 11011 27
A A - 11100 28
B B ? 11101 29
C C : 11110 30
V V = 11111 31

Notes
1 Erase is represented by an asterisk (“*”) in the simulator. When this character is output, it sets the

teleprinter into letter shift.
2 Blank tape is represented by a period (“.”). This character has no effect on output.
3 The personal computer text environment has only a “newline” character. On the Edsac simulator,

the line-feed character is interpreted as a newline character, and carriage returns are thrown away.
4 The symbols θ, φ, ∆ or π are typed as @, !, & and #, respectively.

41

Table 3 Specifications of Basic Library Subroutines

Subroutine Length Description and Notes

Input-output

P1 21 Print positive long fraction in 0D to n decimals.
Program parameter is P n F. See Reciprocals program
for example of use.

P6 32 Print short positive integer in 0F. See Cubes program
for example of use.

P7 35 Print long positive integer in 0D. Must start in an even
location.

P14 46 Print signed decimal fraction in preset layout. See
specification in the Program Documentation pdf file,
and example of use in TPK program.

R1 55 Input a sequence of signed, long decimal fractions. See
documentation in the Edsac Texts folder, and example
of use in TPK program.

R3 41 Input a signed long-decimal fraction. Reads a fraction
punched in decimal form followed by sign into 0D.

R4 22 Input a signed integer. Reads an integer punched in
decimal form followed by sign. Short integers placed in
0F; long integers placed in OD.

Mathematical

D6 36 Division. Divides 0D by 4D; result in 0D.

E2 19 Exponential. See specification in Program Document-
ation pdf file.

S2 22 Square root. Forms square root of 4D; result in 4D.

S3 25 Cube root. Forms cube root of 6D; result in 0D.

T1 44 Cosine. See specification in Program Documentation
pdf file.

Miscellaneous

M3 - Print a heading. Copies information from the tape to the
teleprinter. Occupies 10 locations (temporarily). See
Reciprocals program for example of use.

M20 - Read in a three-digit decimal number from the dial. See
specification in Program Documentation pdf file.

Continued

42

Table 3 continued

Checking

C7 61 Checking routine - trace of function code letters.

C10 88 Checking routine - trace of accumulator contents.

Post-mortem routines

PM0 Starting at location n, print the order-code letter
contained in the top five binary digits of each location;
continue until stopped by the operator. Occupies
locations 41-44.

PM1-PM4 Starting at location n, print the contents of each
location as a decimal number in the following form:

 PM1: short fractions
 PM2: long fractions
 PM3: short integers
 PM4: long integer

Continue until stopped by the operator. All routines
occupy locations 955-1023.

PM5 Starting at location n, interpret each word of store as an
order and print the appropriate order; continue until
stopped by the operator. Occupies locations 940-1023.

Table 4 Some Useful Constants

-0.1 L 1229 F +1/3 H 682 D 1/2 x 10-4 F 1464 D
C 819 F T 682 D P 1 D

+0.2 S 1638 D +1/7 θ 585 F 1/2 x 10-6 W 199 F
E 409 D W 585 F P F

-0.3 S 1638 D 1/9 K 455 F 1/2 x 10-10 P D
G 409 D C 455 F P F

+0.4 L 1229 F -1/11 ¹ 1303 D +10-2 x 26 W1147 F
Y 819 F C 1117 F J 419 D

-0.6 L 1229 F -¹/4 O 699 D +10-3 x 29 G 1327 F
N 819 F D 888 F I 393 F

+0.7 S 1638 D -¹/6 G 1149 F +10-4 x 213 T 1714 F
¹ 409 D M1274 D Z 219 D

-0.8 S 1638 D -2/¹ V 291 D +102 x 2-7 S 1024 F
D 409 D H 1667 F

+103 x 2-10 K 3328 F
+0.9 L 1229 F +e/4 H 177 D

K 819 F J 1788 F +104 x 2-14 O 1568 F

Department of Computer Science • University of Warwick • Coventry CV4 7AL • UK

	Contents
	Before You Begin: What the Papers Said
	1 GETTING STARTED
	1.1 Display and Controls
	1.2 The June 1949 Programs
	1.3 The Text Editor
	1.4 Help and Documentation

	2 EDSAC ARCHITECTURE AND ARITHMETIC
	2.1 Architecture and Instruction Set
	2.2 Numbers and Arithmetic
	2.3 Miscellaneous

	3 PROGRAMMING THE EDSAC
	3.1 Hello World
	3.2 Cubes
	3.3 Reciprocals

	4 DEBUGGING: GETTING PROGRAMS RIGHT
	4.1 Peeping
	4.2 Post-mortems
	4.3 Checking Routines

	5 PROBLEMS FROM THE SUMMER SCHOOL AND ELSEWHERE
	Acknowledgements
	Bibliography
	Appendix of Tables
	Table 1 The EDSAC Instruction Set (1949)
	Table 2 Edsac Character Codes
	Table 3 Specifications of Basic Library Subroutines
	Table 4 Some Useful Constants

