
T H E A T A R I C O M P E N D I U M

– APPENDIX C –

NATIVE FILE FORMATS

Native File Formats – C.3

T H E A T A R I C O M P E N D I U M

The .GEM File Format

Files ending in ‘.GEM’ are graphic metafiles created by GDOS. They are usually used to
represent vector graphics but may also be used to store links to bitmap images and textual
information.

Two primary versions of GEM files exist. Version 1 files are guaranteed not to contain bezier
curves whereas version 3 files may. Version 3.xx files are also commonly referred to as GEM/3
files.

The Metafile Header
GEM metafiles begin with a header as follows:

WORD Contents
0 Magic number (0xFFFF).
1 Header length in WORDs.
2 Version number (major * 100 + minor).
3 NDC Flag as follows:

Value Meaning
0 (0, 0) in lower-left corner (NDC)
2 (0, 0) in upper-left corner (RC)

4 Minimum X extent.
5 Minimum Y extent.
6 Maximum X extent.
7 Maximum Y extent.
8 Page width in tenths of millimeters.
9 Page height in tenths of millimeters.
10 Lower Left X value of coordinate system.
11 Lower Left Y value of coordinate system.
12 Upper Right X value of coordinate system.
13 Upper Right Y value of coordinate system.
... Other information may appear in the header

following which is currently undefined. Use
WORD #1 to skip any unknown information.

The definition of WORDs 4–13 is defined by the creator of the file using three metafile
commands. WORDs 4–7 are set with the v_meta_extents() function. WORDs 8–9 are defined
with the vm_pagesize() function. WORDs 10–13 are defined with vm_coords(). If the creator
fails to specify defaults for any of these values, the appropriate values will be set to 0 in the
header. If zeros appear for WORDs 10–13, the default NDC coordinate system should be
assumed.

C.4 – Native File Formats

T H E A T A R I C O M P E N D I U M

Metafile Records
Following the header will appear a list of records of varying length which, when translated, can
be ‘played back’ on the destination VDI device. Each record is formatted as follows:

WORD Meaning
0 Opcode of VDI function.
1 Number of PTSIN elements.
2 Number of INTIN elements.
3 Function sub-ID.

4... PTSIN elements.
... INTIN elements.

The list of records is terminated with an opcode of 0xFFFF (this record is written when a
v_clswk() call is made by the creator).

When playing back GEM files, the application must translate all coordinates from the metafile
coordinate system to that of the destination device. In addition, text metrics should be
appropriately converted. If an unknown opcode is discovered it should be played after any
elements of the PTSIN array are translated (making the assumption that they should be).

Metafile Sub-Opcodes
GEM metafiles support the use of special sub-opcodes for implementing reserved and user-
defined functions. GEM metafile translators should ignore sub-opcodes they don’t understand.
Each sub-opcode can be identified with the primary opcode of 5, function ID of 99 and the first
(required) member of INTIN being the sub-opcode ID. The currently defined sub-opcodes are as
follows:

INTIN[0] Meaning
10 Start Group.
11 End Group.
49 Set No Line Style.
50 Set Attribute Shadow On.
51 Set Attribute Shadow Off.
80 Start Draw Area Type Primitive.
81 End Draw Area Type Primitive.

None of the pre-defined sub-opcodes use additional INTIN or PTSIN elements though user-
defined sub-opcodes may.

Opcodes from 0–100 are reserved for use by Atari. Sub-opcodes from 101-65535 are available
for use by developers but should be registered with Atari to avoid possible conflicts.

Native File Formats – C.5

T H E A T A R I C O M P E N D I U M

The .IMG File Format

The IMG file format was designed to support raster images with a varying number of planes. In
practice, almost all IMG files currently available are simple black and white single plane
images because the original file format did not specify a method of storing palette information
with the file. To fill this need, several unofficial extensions to the format were put into use
(some of which were incorrectly implemented by applications supporting them). The color
extension which will be discussed here to cover color images is the ‘XIMG’ format.

The IMG Header
Image headers consist of at least 8 WORDs as follows:

WORD Meaning
0 Image file version (Usually 0x0001).
1 Header length in WORDs.
2 Number of planes.
3 Pattern definition length.
4 Source device pixel width (in microns).
5 Source device pixel height (in microns).
6 Scan line width (in pixels).
7 Number of scan lines.

Some IMG files will have additional header information which should be skipped or interpreted
as discussed below.

Interpreting Extra Palette Information
If WORD #2 is set to 1, then the image data consists of one plane (i.e. monochrome) and any
extra header information should be ignored.

If WORD #2 is set to 16 or 24 then the image data consists of that many planes of high color or
true color data and any extra header information should be ignored. In a high color image, planes
appear in the order RRRRR GGGGGG BBBBB. In a true-color image, planes appear in the
order RRRRRRRR GGGGGGGG BBBBBBBB.

If WORD #2 is set to 2, 4, or 8, the image consists of palette based color image data. If no extra
header information is given then the creator did not specify palette data for this image. If extra
header WORDs appears they may be useful in determining the color palette. The two primary
extensions to the IMG format are ‘XIMG’ and ‘STTT’. ‘STTT’ will not be discussed here as it
does not serve well as a machine or device independent format. The ‘XIMG’ header extension is
as follows:

C.6 – Native File Formats

T H E A T A R I C O M P E N D I U M

WORD Meaning
8 & 9 ASCII ‘XIMG’

10 Color format (Almost always 0 – RGB).
11... RGB WORD triplets. Three WORDs appear

for each pen. There are (2 ^ numplanes)
pens. Each word contains a value from 0 to
1000 for direct passage to vs_color() .

Image Data Format
Each scanline contains data in VDI device independent format which must be converted using
the VDI call vr_trnfm() . Each scanline is padded to the nearest byte. Every plane for each
scanline should appear prior to the beginning of data for the next scanline. This allows
interpreters to decompress and transform the image data a scanline at a time to conserve on time
and memory. A sample ordering for a four-plane image is listed below:

Scanline #0 – Plane #0
Scanline #0 – Plane #1
Scanline #0 – Plane #2
Scanline #0 – Plane #3
Scanline #1 – Plane #0
Scanline #1 – Plane #1
Scanline #1 – Plane #2
Scanline #1 – Plane #3

etc.

Image Compression
Each scanline is individually compressed. This means that compression codes should not
transgress over scanline boundaries. This enables decompression routines to work scanline by
scanline.

Scanline data should consist of two components, a vertical replication count and encoded
scanline data. In practice, however, some older .IMG files may not contain a vertical replication
count for each scan line.

The vertical replication count specifies the number of times the following scanline data should
be used to replicate an image row. It is formatted as follows:

BYTE Contents
0 0x00
1 0x00
2 0xFF
3 Replication Count

Immediately following the vertical replication count is the encoded scanline data. This
run-length encoding can by looking for three separate flag BYTEs. A 0x80 BYTE indicates the
beginning of a bit-string item. A bit-string item is formatted as follows:

Native File Formats – C.7

T H E A T A R I C O M P E N D I U M

BYTE Contents
0 0x80
1 Byte count ‘n’.

2... ‘n’ BYTEs of
unencoded data.

A pattern-run item begins with a BYTE of 0x00. It specifies a fixed number of times that the
pattern which follows it should be repeated. It is formatted as follows:

BYTE Contents
0 0x00
1 Length of run.

2... Pattern bytes
(length of pattern is
determined by
header WORD
#3).

Finally, a solid-run item begins with any other BYTE code. If the high order bit is set then this
indicates a run of black pixels, otherwise it indicates a run of white pixels. The lower 7 bits of
the byte indicates the length of the run in bytes. For example a BYTE code of 0x83 indicates a
run of 24 black pixels (3 bytes).

The .FNT File Format

Filenames ending with the extension ‘.FNT’ represent bitmap font files. These files may be
utilized by loading them through any version of GDOS. FNT files are composed of a file header,
font data, a character offset table, and (optionally) a horizontal offset table.

The FNT Header
Font files begin with a header 88 BYTEs long. WORD and LONG format entries in the header
must be byte-swapped as they appear in Intel (‘Little Endian’) format. The font header is
formatted as follows:

BYTE(s) Contents Related VDI Call
0 – 1 Face ID (must be unique). vqt_name()
2 – 3 Face size (in points). vst_point()
4 – 35 Face name. vqt_name()

36 – 37 Lowest character index in face
(usually 32 for disk-loaded fonts).

vqt_fontinfo()

38 – 39 Highest character index in face. vqt_fontinfo()
40 – 41 Top line distance expressed as a

positive offset from baseline.
vqt_fontinfo()

42 – 43 Ascent line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

44 – 45 Half line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

46 – 47 Descent line distance expressed as
a positive offset from baseline.

vqt_fontinfo()

C.8 – Native File Formats

T H E A T A R I C O M P E N D I U M

48 – 49 Bottom line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

50 – 51 Width of the widest character. N/A
52 – 53 Width of the widest character cell. vqt_fontinfo()
54 – 55 Left offset. vqt_fontinfo()
56 – 57 Right offset. vqt_fontinfo()
58 – 59 Thickening size (in pixels). vqt_fontinfo()
60 – 61 Underline size (in pixels). vqt_fontinfo()
62 – 63 Lightening mask (used to eliminate

pixels, usually 0x5555).
N/A

64 – 65 Skewing mask (rotated to determine
when to perform additional rotation
on a character when skewing, usually
0x5555).

N/A

66 – 67 Font flags as follows:

Bit Meaning (if Set)
0 Contains System Font
1 Horizontal Offset

Tables should be used.
2 Font data need not be

byte-swapped.
3 Font is mono-spaced.

N/A

68 – 71 Offset from start of file to horizontal
offset table.

vqt_width()

72 – 75 Offset from start of file to character
offset table.

vqt_width()

76 – 79 Offset from start of file to font data. N/A
80 – 81 Form width (in bytes). N/A
82 – 83 Form height (in scanlines). N/A
84 – 87 Pointer to the next font (set by GDOS

after loading).
N/A

Font Data
The binary font data is arranged on a single raster form. The raster’s height is the same as the
font’s height. The raster’s width is the sum of the character width’s padded to end on a WORD
boundary.

There is no padding between characters. Each character may overlap BYTE boundaries. Only
the last character in a font is padded to make the width of the form end on an even WORD
boundary.

If bit #2 of the font flags header item is cleared, each WORD in the font data must be byte-
swapped.

Native File Formats – C.9

T H E A T A R I C O M P E N D I U M

Character Offset Table
The Character Offset Table is an array of WORDs which specifies the distance (in pixels) from
the previous character to the next. The first entry is the distance from the start of the raster form
to the left side of the first character. One succeeding entry follows for each character in the font
yielding (number of characters + 1) entries in the table. Each entry must be byte-swapped as it
appears in Intel (‘Little Endian’) format.

Horizontal Offset Table
The Horizontal Offset Table is an optional array of positive or negative WORD values which
when added to the values in the character offset table yield the true spacing information for each
character. One entry appears in the table for each character. This table is not often used.

The .RSC File Format

Resource files contain application specific data which is generally loaded at run-time. RSC files
contain OBJECT trees (see the discussion of the OBJECT structure in Chapter 6: AES),
strings, and images.

Two resource file formats are currently supported. TOS versions less than 4.0 support the
original RSC format while TOS 4.0 and greater will now support the older format and a new
extensible format. The original format will be discussed first followed by an explanation of the
changes incurred by the newer format.

The RSC Header
Resource files begin with an 18 WORD header as follows:

WORD Field Name Contents
0 rsh_vrsn Contains the version number of the

resource file. This value is 0x0000 or
0x0001 in old format RSC files and has
the third bit set (i.e. 0x0004) in the new
file format.

1 rsh_object Contains an offset from the beginning of
the file to the OBJECT structures.

2 rsh_tedinfo Contains an offset from the beginning of
the file to the TEDINFO structures.

3 rsh_iconblk Contains an offset from the beginning of
the file to the ICONBLK structures.

4 rsh_bitblk Contains an offset from the beginning of
the file to the BITBLK structures.

5 rsh_frstr Contains an offset from the beginning of
the file to the string pointer table.

6 rsh_string Contains an offset from the beginning of
the file to the string data.

7 rsh_imdata Contains an offset from the beginning of
the file to the image data.

8 rsh_frimg Contains an offset from the beginning of
the file to the image pointer table.

C.10 – Native File Formats

T H E A T A R I C O M P E N D I U M

9 rsh_trindex Contains an offset from the beginning of
the file to the tree pointer table.

10 rsh_nobs Number of OBJECTs in the file.
11 rsh_ntree Number of object trees in the file.
12 rsh_nted Number of TEDINFOs in the file.
13 rsh_nib Number of ICONBLK s in the file.
14 rsh_nbb Number of BITBLK s in the file.
15 rsh_nstring Number of free strings in the file.
16 rsh_nimages Number of free images in the file.
17 rsh_rssize Size of the resource file (in bytes). Note

that this is the size of the old format
resource file. If the newer format file is
being used then this value can be used
as an offset to the extension array.

Many of the header entries represent offsets from the beginning of the file. These offsets are
expressed as positive unsigned WORDs making the standard file a maximum size of 64k bytes.

Object Trees
Each RSC file may contain a number of object trees. rsh_object contains an offset from the
beginning of the file to the object trees (stored consecutively). The LONG array pointed to by
rsh_trindex can be used to separate the object trees in the list. There are rsh_ntree LONGs in
this array. Each array entry can be used as an array index to a different object tree. After being
loaded in memory by rsrc_load(), the members at rsh_trindex are filled in with the absolute
pointers to their respective trees.

Each individual OBJECT is stored differently on disk then in memory. In the file, pointers to
TEDINFO s, BITBLK s, and ICONBLK s are stored as absolute indexes into the arrays of these
members stored in the file. Therefore a G_TEXT OBJECT whose ob_spec field would
normally point a TEDINFO in memory would contain the value 0 if that TEDINFO were the
first TEDINFO contained in the file.

String pointers are represented on disk by their absolute offset from the beginning of the file.
Image pointers in BITBLK and ICONBLK structures are likewise pointed to through absolute
file offsets, not indexes.

Native File Formats – C.11

T H E A T A R I C O M P E N D I U M

Free Strings and Images
rsh_frstr points to a table of LONGs which each specify an offset from the start of the RSC file
to a free string. rsh_frimg points to a table of LONGs which each specify an offset from the
start of the file to a BITBLK structure.

AES 3.30 Resource Format
Beginning with AES 3.30, the resource file format was altered to allow for new OBJECT
types. The only OBJECT which currently takes advantage of this format is G_CICON.
G_CICONs can only be stored in files of the new format. The new format can be identified by
the third bit of rsh_vrsn being set.

The Extension Array
Immediately following the old resource data (using rsh_rssize as an offset) an extension array is
added. The first entry in this array is a LONG containing the true size of the RSC file. Notice
that values such as these are now stored as LONGs to allow the size of RSC files to exceed
64k. Due to the method in which some older resource elements were stored many components of
RSC files will still be constrained to 64k.

Following the file size is a LONG word for each extension present followed by a 0L which
terminates the array. Currently only one extension exists (CICONBLK) and it always occupies
the first extension slot. As additional extensions are added, a value of -1L for any entry will
indicate that there are no resource elements of that type in the file. For example an extension
array that does contain CICONBLK s would look like this.

...basic resource file...
LONG filesize

LONG cicon_offset
0L

The CICONBLK Extension
The G_CICON object type adds the ability to display color icons from the AES. The ob_spec
of the object indexes a CICONBLK structure stored in the extension area. Each CICONBLK
must contain a monochrome icon and a color icon for as many different resolutions as desired.
When drawn, the AES will pick the icon that is the closest match for the current screen display.
If there is no color icon present which the AES is able to convert, the monochrome icon is
displayed.

The cicon_offset pointer gives an offset from the beginning of the resource file to a file segment
which contains the CICON data. This segment contains a CICONBLK pointer table followed
by the actual CICONBLK s.

The CICONBLK pointer table is simply a longword 0L for each CICONBLK present in the
file. These pointers are filled in by the AES when loaded. The list is terminated by a -1L.

C.12 – Native File Formats

T H E A T A R I C O M P E N D I U M

Immediately following the pointer table is one of the following variable length structures for
each CICONBLK :

ICONBLK monoicon; /* This is the standard monochrome resource. */
LONG n_cicons; /* Number of CICONs of different resolutions. */
WORD mono_data[x]; /* Monochrome bitmap data. */
WORD mono_mask[x]; /* Monochrome bitmap mask. */
CHAR icon_text[12]; /* Icon text (maximum of 12 characters). */

/* for each resolution supported (n_cicons) include the following structure */

WORD num_planes; /* Number of planes this icon was intended for */
LONG col_data; /* Placeholder (calculated upon loading). */
LONG col_mask; /* Placeholder (calculated upon loading). */
LONG sel_data; /* Placeholder (must be non-zero if ‘selected’ data exists */
LONG sel_mask; /* Placeholder (calculated upon loadind). */
LONG next_res; /* 1L = more icons follow */
WORD color_data[n]; /* n WORDs of image data (n is num_planes*WORDs in mono

icon).*/
WORD color_mask[n]; /* n WORDs of image mask. */
WORD select_data[n]; /* Only present if sel_data is non-zero. */
WORD select_mask[n]; /* Only present if sel_data is non-zero. */

CICON Images
All color image data is stored in VDI device independent format on disk and is automatically
converted by vr_trnfm() upon rsrc_load()1.

1Due to a bug in some versions of the VDI the seventh WORD of color icon image data may not contain the value 0x0001. If it does, the
VDI may incorrectly display the icon.

