
T H E A T A R I C O M P E N D I U M

BIOS Function Reference

Bconin() – 3.27

T H E A T A R I C O M P E N D I U M

Bconin()
LONG Bconin(dev)
WORD dev;

Bconin() retrieves a character (if one is waiting) from the specified device.

OPCODE 2 (0x02)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to read from as follows:

Name dev Device

DEV_PRINTER 0 Parallel port

DEV_AUX 1 Auxillary device (normally the RS-232 port, however, TOS
versions with Bconmap() can map in other devices to this
handle)

DEV_CONSOLE 2 Console device (keyboard)

DEV_MIDI 3 MIDI Port

DEV_IKBD 4 IKBD Controller (not available as an input device)

DEV_RAW 5 Console device (keyboard)

See Overview 6 – Additional devices (as available)

BINDING move.w dev,-(sp)
move.w #$02,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bconin() returns a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Shift key status
(see Kbshift())

Keyboard
Scan Code

Reserved
(0)

ASCII value

COMMENTS The shift key status is only returned if the system variable conterm (char *(0x484)
) has bit 3 set. This is normally disabled.

Non-ASCII keys return 0 in bits 7-0.

SEE ALSO Bconstat(), Cconin(), Cauxin()

3.28 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

Bconout()
LONG Bconout(dev, ch)
WORD dev, ch;

Bconout() outputs a character to a named device.

OPCODE 3 (0x03)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the output device as follows:

Name dev Device

DEV_PRINTER 0 Parallel port

DEV_AUX 1 Auxillary device (see note under Bconin())

DEV_CONSOLE 2 Console device (screen)

DEV_MIDI 3 MIDI port

DEV_IKBD 4 Keyboard (IKBD)

DEV_RAW 5 Raw screen device (control characters and escapes are
not processed)

See Overview 6 – Additional devices (as available)

BINDING move.w ch,-(sp)
move.w dev,-(sp)
move.w #$03,-(sp)
trap #13
addq.l #6,sp

RETURN VALUE Bconout() returns 0 if the character was sent successfully or non-zero otherwise.

SEE ALSO Bconin(), Cconout(), Cauxout(), Cprnout(), Bcostat()

Bconstat()
LONG Bconstat(dev)
WORD dev;

Bconstat() determines whether the specified device is prepared to transmit at
least one character.

OPCODE 1 (0x01)

Bcostat() – 3.29

T H E A T A R I C O M P E N D I U M

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to check as listed under Bconin().

BINDING move.w dev,-(sp)
move.w #$01,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bconstat() returns 0 if no characters are waiting or -1 if characters are waiting to
be received.

SEE ALSO Bconin(), Cconis(), Cauxis()

Bcostat()
LONG Bcostat(dev)
WORD dev;

Bcostat() determines if the specified device is prepared to receive a character.

OPCODE 8 (0x08)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to poll as listed under Bconout().

BINDING move.w dev,-(sp)
move.w #$08,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bcostat() returns 0 if the device is not ready to receive characters or -1
otherwise.

CAVEATS A bug in TOS 1.0 existed that caused the IKBD and MIDI device numbers to
become swapped when being handled by the Bcostat() call, subsequently
returning data for the wrong device. To allow previously written programs to
continue operating correctly, this bug has been maintained on purpose in all
current versions of TOS. You should therefore specify a value of 3 for the IKBD
and 4 for MIDI for this call only.

SEE ALSO Bconout(), Cauxos(), Cconos(), Cprnos()

3.30 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

Drvmap()
ULONG Drvmap(VOID)

Drvmap() returns a list of mounted drives.

OPCODE 10 (0x0A)

AVAILABILITY All TOS versions.

PARAMETERS None.

BINDING move.w #$0A,-(sp)
trap #13
addq.l #2,sp

RETURN VALUE Drvmap() returns a ULONG bitmap of mounted drives. For each drive present,
its bit is enabled. Drive ‘A:’ is bit 0, drive ‘B:’ is bit 1, and so on.

COMMENTS Single floppy systems will indicate that two drives are available since both drives
can actually be addressed. A request for drive ‘B:’ will simply cause TOS to ask
the user to insert ‘Disk B’ and provide automatic handling routines for all disk
swapping.

SEE ALSO Dsetdrv()

Getbpb()
BPB *Getbpb(dev)
WORD dev;

Getbpb() returns the address of the current BPB (Bios Parameter Block) for a
mounted device.

OPCODE 7 (0x07)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the mounted device (‘A:’ = 0, ‘B:’ = 1) .

BINDING move.w dev,-(sp)
move.w #$07,-(sp)
trap #13
addq.l #4,sp

Getmpb() – 3.31

T H E A T A R I C O M P E N D I U M

RETURN VALUE Getbpb() returns a pointer to the device’s BPB. The BPB is defined as follows:

typedef struct
{

WORD recsiz; /* bytes per sector */
WORD clsiz; /* sectors per cluster */
WORD clsizb; /* bytes per cluster */
WORD rdlen; /* sector length of root directory */
WORD fsiz; /* sectors per FAT */
WORD fatrec; /* starting sector of second FAT */
WORD datrec; /* starting sector of data */
WORD numcl; /* clusters per disk */
WORD bflags; /* bit 0=1 - 16 bit FAT, else 12 bit */

} BPB;

CAVEATS A media change must be forced after calling this function prior to making any
GEMDOS calls. Failure to do so may cause GEMDOS to become unaware of a
disk change causing data loss. Refer to the discussion of forcing a media change
earlier in this chapter.

Getmpb()
VOID Getmpb(mpb)

Getmpb() returns information regarding GEMDOS free and allocated memory
blocks.

OPCODE 0 (0x00)

AVAILABILITY All TOS versions.

PARAMETERS mpb is a pointer to a MPB structure which is filled in by the function. The related
structures are defined as follows:

typedef struct md
{

struct md *m_link; /* pointer to next block */
VOIDP m_start; /* pointer to start of block */
LONG m_length; /* length of block */
BASEPAGE *m_own; /* pointer to basepage of owner */

} MD;

typedef struct mpb
{

MD *mp_mfl; /* free list */
MD *mp_mal; /* allocated list */
MD *mp_rover; /* roving pointer */

} MPB;

3.32 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING pea mpb
clr.w -(sp)
trap #13
addq.l #6,sp

CAVEATS MultiTOS uses a very different method of memory management which makes this
call useless.

COMMENTS An application should never attempt to modify any of the returned information nor
make any assumptions about memory allocation because of this function.

SEE ALSO Malloc(), Mfree()

Kbshift()
LONG Kbshift(mode)
WORD mode;

Kbshift() allows the user to interrogate or modify the state of the keyboard
‘special’ keys.

OPCODE 11 (0x0B)

AVAILABILITY All TOS versions.

PARAMETERS mode is -1 to read the state of the keys or a mask of the following values to change
the current state:

Name Mask Meaning

K_RSHIFT 0x01 Right shift key depressed

K_LSHIFT 0x02 Left shift key depressed

K_CTRL 0x04 Control key depressed

K_ALT 0x08 Alternate key depressed

K_CAPSLOCK 0x10 Caps-lock engaged

K_CLRHOME 0x20 Clr/Home key depressed

K_INSERT 0x40 Insert key depressed

BINDING move.w mode,-(sp)
move.w #$0B,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Kbshift() returns the state that the keyboard ‘special’ keys were in prior to the
call.

Mediach() – 3.33

T H E A T A R I C O M P E N D I U M

COMMENTS Kbshift() is not a particularly fast call. If you are only interested in reading the
state a documented macro follows that replaces Kbshift() and is much faster. Call
the kb_init() function, as shown below, before using:

char *p_kbshift;
#define Kbstate() *p_kbshift

VOID
kb_init(VOID)
{

/* GetROMSysbase is defined in the BIOS Overview */
OSHEADER *osheader = GetROMSysbase();

if (osheader->os_version == 0x0100)
p_kbshift = (char *)0xe1bL;

else
p_kbshift = *(char **)osheader->p_kbshift;

}

SEE ALSO evnt_keybd(), evnt_multi(), Cconin(), Bconin()

Mediach()
LONG Mediach(dev)
WORD dev;

Mediach() inquires as to whether the ‘media’ has been changed since the last disk
operation on a removable block device (floppy, removable hard drive, floptical,
etc...).

OPCODE 9 (0x09)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the mounted device number to inquire (‘A:’ = 0, ‘B:’ = 1, etc.).

BINDING move.w dev,-(sp)
move.w #$09,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Mediach() returns one of three values:

Name Value Meaning

MED_NOCHANGE 0 Media has not changed

MED_UNKNOWN 1 Media may have changed

MED_CHANGED 2 Media has changed

3.34 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Getbpb()

Rwabs()
LONG Rwabs(mode, buf, count, recno, dev, lrecno)
WORD mode;
VOIDP buf;
WORD count,recno,dev;
LONG lrecno;

Rwabs() reads and writes sectors to a mounted device.

OPCODE 4 (0x04)

AVAILABILITY All TOS versions. Hard disk access requires the use of a hard disk driver (such as
AHDI). The long sector offset version is only available as of AHDI 3.0. AHDI
version numbers can be inquired through system variable pun_ptr (see discussion
earlier in this chapter).

PARAMETERS mode is a bit mask which effects the operation to be performed as follows:

Name Bit Meaning

RW_READ
or
RW_WRITE

0 0 = Read, 1 = Write

RW_NOMEDIACH 1 Do not read or modify the media change status.

RW_NORETRIES 2 Disable retries

RW_NOTRANSLATE 3 Do not translate logical sectors into physical sectors
(recno specifies physical instead of logical sectors)

The read or write operation is performed at address buf. buf must be count * bytes
per logical sector in logical mode or count * 512 bytes in physical mode. count
specifies how many sectors will be transferred.

dev specifies the index of the mounted device. In logical mode, ‘C:’ is 2, ‘D:’ is 3,
etc... In physical mode, devices 2-9 are the ACSI devices and 10-17 are SCSI
devices.

recno specifies the first sector to read from. If you need to specify a long offset,
set recno to -1 and pass the long value in lrecno. When using a version of the
AHDI below 3.0, the parameter lrecno should not be passed.

BINDING /* If running AHDI <3.0 omit first parameter */

Setexc() – 3.35

T H E A T A R I C O M P E N D I U M

move.l lrecno,-(sp)
move.w dev,-(sp)
move.w recno,-(sp)
move.w count,-(sp)
pea buf,-(sp)
move.w mode,-(sp)
move.w #$04,-(sp)
trap #13
lea 18(sp),sp

RETURN VALUE Rwabs() returns E_OK (0) if successful or a negative BIOS error code
otherwise.

COMMENTS Some C compilers (Lattice C in particular) have a secondary binding called
Lrwabs() used to pass the additional parameter.

This function may invoke the critical error handler (etv_critic).

Setexc()
(VOIDP)() Setexc(num, newvec)
WORD num;
VOID (* newvec)();

Setexc() reads or modifies system exception vectors.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions.

PARAMETERS num indicates the vector number you are interested in. To obtain the vector number
divide the address of the vector by 4. Some common vectors are:

Name num Vector

VEC_BUSERROR
VEC_ADDRESSERROR
VEC_ILLEGALINSTRUCTION

0x02 - 0x04 Bomb errors (Bus, Address,
Instruction)

VEC_GEMDOS 0x21 Trap #1 (GEMDOS)

VEC_GEM 0x22 Trap #2 (AES/VDI)

VEC_BIOS 0x2D Trap #13 (BIOS)

VEC_XBIOS 0x2E Trap #14 (XBIOS)

VEC_TIMER 0x100 System timer (etv_timer)

VEC_CRITICALERROR 0x101 Critical error handler (etv_critic)

VEC_TERMINATE 0x102 Process terminate handle (etv_term)

newvec should be the address of your new vector handler. Passing a value of

3.36 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

VEC_INQUIRE ((VOIDP)-1) will not modify the vector.

BINDING pea newvec
move.w num,-(sp)
move.w #$05,-(sp)
trap #13
addq.l #8,sp

RETURN VALUE The original value of the vector is returned by the call.

COMMENTS You must reinstate old vector handlers you changed prior to your process exiting.

Programs which modify replace system vector code should install themselves
following the conventions of the XBRA protocol. For details, consult the
overview portion of this chapter.

Tickcal()
LONG Tickcal(VOID)

Tickcal() returns the system timer calibration.

OPCODE 6 (0x06)

AVAILABILITY All TOS versions.

PARAMETERS None.

BINDING move.w #$06,-(sp)
trap #13
addq.l #2,sp

RETURN VALUE Tickcal() returns a LONG indicating the number of milliseconds between system
clock ticks.

