
T H E A T A R I C O M P E N D I U M

– CHAPTER 3 –

BIOS

Overview – 3.3

T H E A T A R I C O M P E N D I U M

Overview

The Basic Input/Output System (BIOS) is responsible for the lowest level of communications
between the operating system and hardware devices. This chapter will document the operating
system functions of the BIOS and other system level operations.

System Startup

Upon a cold or warm boot1, microprocessors in the 680x0 series load the initial supervisor
stack pointer from the first longword in memory ($0) and begin execution at the PC found in the
second longword ($4). The location this points to is the base initialization point for Atari
computers.

Every Atari computer follows a predefined set of steps to accomplish system initialization. The
following illustrates these steps leaving out some hardware initialization which is specific to the
particular computer line (ST, TT, Falcon, etc.).

• The Interrupt Priority Level (IPL) is set to 7 and the OS switches to supervisor
mode.

• A RESET instruction is executed to reset external hardware devices.

• The presence of a diagnostic cartridge is determined. If one is inserted, it is
JMP’ed to with a return address in register A6.

• If running on a 68030, the CACR, VBR, TC, TT0, and TT1 registers are
initialized.

• If a floating-point coprocessor is present it is initialized.

• If the memvalid ($420), memval2 ($43A), and memval3 ($51A) system variables
are all valid, a warm boot is assumed and the memory controller is initialized with
the value from memcntrl ($424).

• The initial color palette registers are loaded and the screen base is initialized to
$100000.

• Memory is sized if it wasn’t from a previous reset.

• Magic numbers are stored in low memory to indicate the successful sizing and
initialization of memory.

• System variables and the cookie jar are initialized.

• The BIOS initialization point is executed.

• Installed cartridges of type 2 are executed.

1A cold boot occurs when the computer system experiences a total loss of power and no memory locations can be considered valid (this
can be done artificially by zeroing memory, as is the case with the CTRL-ALT-RSHIFT-DELETE reset). A warm boot is a manual restart of the
system which can be accomplished via software (like the CTRL-ALT-DELETE reset) or the external reset button found on some machines.

3.4 – BIOS

T H E A T A R I C O M P E N D I U M

• The screen resolution is programmed.

• Installed cartridges of type 0 are executed.

• Interrupts are enabled by lowering the IPL to 3.

• Installed cartridges of type 1 are executed.

• The GEMDOS initialization point is executed.

• On systems running TOS 2.06 or TOS 3.06 and above, the Fuji logo is displayed
and a memory test and hard disk spin-up sequence is executed.

• If at least one floppy drive is attached to the system, the first sector of the first
floppy drive is loaded, and if executable, it is called.

• If at least one hard disk or other media is attached to the system, the first sector of
each is loaded in succession until one with an executable sector is found or each
has been tried.

• If a hard disk sector was found that was executable, it is executed.

• The text cursor is enabled.

• All “\AUTO*.PRG” files found on the boot disk are executed.

• If _cmdload ($482) is 0 then an environment string is created and the AES is
launched, otherwise “\COMMAND.PRG” is loaded.

• If the AES ever terminates, the system is reset and system initialization begins
again.

OS Header

The address of the start of operating system is stored in the system variable _sysbase ($4F2).
The beginning of the operating system contains a table with contents as follows:

Offset
(_sysbase + $x) Size Contents

$0 WORD os_entry: BRA to reset hander (shadowed at $0).
$2 WORD os_version: TOS version number. The high byte is the major

revision number, and the low byte is the minor revision number.
$4 LONG reseth: Pointer to the system reset handler.
$8 LONG os_beg: Base address of the OS (same as _sysbase).
$C LONG os_end: Address of the first byte of RAM not used by the

operating system.
$10 LONG os_rsv1: Reserved
$14 LONG os_magic: Pointer to the GEM Memory Usage Parameter Block

(MUPB). See below for more information.
$18 LONG os_date: Date of system build ($YYYYMMDD).
$1C WORD os_conf: OS Configuration Bits. See below for more information.
$1E LONG os_dosdate: GEMDOS format date of system build.

OS Header – 3.5

T H E A T A R I C O M P E N D I U M

$20 LONG p_root: Pointer to a system variable containing the address of the
GEMDOS memory pool structure. This entry is available as of
TOS 1.2. The location pointed to by this value should never be
modified by an application.

$24 LONG p_kbshift: Pointer to a system variable which contains the address
of the system keyboard shift state variable. See below for more
information. This entry is available as of TOS 1.02. This location
should never be modified by an application.

$28 LONG p_run: Pointer to a system variable which contains the address of
the currently executing GEMDOS process. See below for more
information. This entry is available as of TOS 1.02. The
information pointed to by this variable should never be modified by
an application.

$2C LONG p_rsv2: Reserved

Some versions of AHDI (the Atari Hard Disk Interface) contain a bug which copies the system
header to RAM and then corrupts some portions of it. The following ‘C’ structure definition
defines the OSHEADER structure. The function GetROMSysbase() can be used to return an
OSHEADER pointer to the code in ROM. GetROMSysbase() will execute properly in either
user or supervisor mode.

typedef struct _osheader
{

UWORD os_entry;
UWORD os_version;
VOID *reseth;
struct _osheader *os_beg;
char *os_end;
char *os_rsv1;
char *os_magic;
LONG os_date;
UWORD os_conf;
UWORD os_dosdate;

/* Available as of TOS 1.02 */
char **p_root;
char **p_kbshift;
char **p_run;
char *p_rsv2;

} OSHEADER;

#define _sysbase ((OSHEADER **)0x4F2)

OSHEADER *
GetROMSysbase(VOID)
{

OSHEADER *osret;
char *savesp = (Super(SUP_INQUIRE) ? NULL : Super(SUP_SET));

osret = (*_sysbase)->os_beg;

if(savesp)
Super(savesp);

return osret;
}

3.6 – BIOS

T H E A T A R I C O M P E N D I U M

OS Configuration Bits
os_conf contains the country code and video sync mode that the operating system was compiled
for. Bit #0 of this variable is 0 to indicate NTSC video mode or 1 to indicate PAL. The
remaining bits, when shifted right by one bit, yield the country code as follows:

os_conf >> 1 Country
0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Switzerland (French)
8 Switzerland (German)
9 Turkey

10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland
15 Czechoslovakia
16 Hungary
127 All countries are supported. As of TOS 4.0 the

OS is compiled with text for all languages and
switches between them based on the country
code stored in non-volatile RAM.

Use the ‘_AKP’ cookie to determine the actual
language in use.

GEM Memory Usage Parameter Block
The pointer at offset $14 in the OS header points to the GEM Memory Usage Parameter Block
which is defined as follows:

typedef struct
{

/* $87654321 if GEM present */
LONG gem_magic;

/* End address of OS RAM usage */
LONG gem_end;

/* Execution address of GEM */
LONG gem_entry;

} MUPB;

GEM is only launched at system startup if gem_magic is $87654321. The XBIOS call
Puntaes() also uses this information to restart the operating system after clearing GEM (only if
disk-based). It verifies that gem_magic was valid and that GEM was in RAM, then it modifies
gem_magic and restarts the operating system.

OS Header – 3.7

T H E A T A R I C O M P E N D I U M

Keyboard Shift State Variable
The OS header entry p_kbshift provides a method of reading the state of the keyboard shift state
variables more quickly than with Kbshift() . This header entry did not exist in TOS 1.0. The
following code provides an acceptable method for accessing this variable in all TOS versions:

#define Kbstate *p_kbshift

char *p_kbshift;

VOID
init_kbshift(VOID)
{

/* See above for GetROMSysbase() definition. */
OSHEADER *os = GetROMSysbase();

if (os->os_version == 0x0100)
p_kbshift = (char *)0xE1BL;

else
p_kbshift = *(char **)os->p_kbshift;

}

Currently Running Process
The OS header entry _p_run is used to locate the address of the basepage of the currently
running process. This entry has only existed as of TOS 1.02 and should never be modified. The
following routine returns the address of the basepage of the currently running process in all
versions of TOS:

#define SPAIN 4
typedef long PID

PID *
get_run()
{

OSHEADER *os = GetROMSysbase();

if(os->os_version < 0x0102)
{

if((os->os_conf >> 1) == SPAIN)
return (PID *)0x873C;

else
return (PID *)0x602C;

}
else

return (PID *)(os->p_run);
}

3.8 – BIOS

T H E A T A R I C O M P E N D I U M

The Cookie Jar

Overview
The ‘Cookie Jar’ is a structure in memory containing entries called ‘cookies’ which are placed
in the ‘jar’ by the operating system or Terminate and Stay Resident (TSR) applications.
Applications can test for the presence of a cookie to determine the presence of a hardware
device or system feature.

The location of the cookie jar is determined by the address contained in the system variable
_p_cookies ($5A0). If no cookie jar has been allocated yet, this entry will contain NULL (0).

Structure
The variable _p_cookies points to multiple COOKIE structures as defined below:

typedef struct
{

LONG cookie;
LONG value;

} COOKIE;

The structure member cookie contains a value that hopefully uniquely identifies the cookie.
cookie values are 4-byte packed longword identifiers (often a 4 letter ASCII code word).
Entries with the high byte equal to $5F, the underscore character, are reserved for use by Atari.

The structure member value may contain any value meaningful to an application or no value at
all. In some cases a cookie won’t have a meaningful value and its presence simply signals the
existence of another process or system feature. TSR’s often use value to store a pointer to an
internal structure. The operating system uses cookies to signal the availability of hardware
devices or system features.

The end of the cookie jar is signaled with a final entry with the value for cookie equaling
NULL . The value entry for this final cookie contains the number of entries possible without
reallocating the jar.

Searching for a Cookie
The following code may be used to find a cookie in the cookie jar. It returns 0 if an error
occurred or 1 if successful. If p_value is non-NULL on entry, the address it points to will be
filled in with the value of the cookie.

WORD
getcookie(target, p_value)
LONG target;
LONG *p_value;
{

char *oldssp;
COOKIE *cookie_ptr;

oldssp = (Super(SUP_INQUIRE) ? NULL : Super(1L));

The Cookie Jar – 3.9

T H E A T A R I C O M P E N D I U M

cookie_ptr = *(COOKIE **)0x5A0;

if(oldssp)
Super(oldssp);

if(cookie_ptr != NULL)
{

do
{

if(cookie_ptr->cookie == target)
{

if(p_value != NULL)
*p_value = cookie_ptr->value;

return 1;
}

} while((cookie_ptr++)->cookie != 0L);
}

return 0;
}

Placing a Cookie
Only TSR programs should place cookies in the cookie jar. The cookie these programs place
should either signal a function provided by the TSR or the presence of an expansion device. A
CPX, desk accessory, or standard application should not place cookies in the jar.

To place a cookie, the TSR must first locate the current location of the cookie jar. It is possible
that a cookie jar does not exist (_p_cookies == 0). In that case, a new jar should be allocated.

In most instances, the cookie jar should be allocated in increments of 8 slots (though it is not a
requirement). In addition, if the process installs a new cookie jar in a TOS version lower than
1.06 it is also the processes responsibility to remove it upon a warm reset. Calling the following
code after installing the cookie jar for the first time will ensure that the cookie jar pointer is
properly reset on a warm boot.

RESMAGIC equ $31415926
_resvalid equ $426
_resvector equ $42A
_p_cookies equ $5A0

.globl _unjar

_unjar: move.l _resvalid,valsave
move.l _resvector,vecsave
move.l #reshand,_resvector
move.l #RESMAGIC,_resvalid
rts

reshand: clr.l _p_cookies
move.l vecsave,_resvector
move.l valsave,_resvalid
jmp (a6)

.bss

3.10 – BIOS

T H E A T A R I C O M P E N D I U M

vecsave: .ds.l 1
valsave .ds.l 1

After determining the location of the cookie jar, the application should search for the first empty
slot in the jar by looking for a NULL in the cookie field of a slot. Next, the application must
determine if this is the last slot in the jar by comparing the entry in the value field of the current
cookie to the number of the actual slot you are comparing. For instance, if you have found NULL
as the value for cookie in slot 16 and value is equal to 16, the jar is full and must be reallocated.

If the slot found is not the last one, the application can simply copy the current slot to the next
slot and insert its own cookie.

If the jar must be reallocated, you should allocate enough memory to increase the size of the
cookie jar, copy the old entries to the new jar, insert your entry as the last cookie in the jar, and
finally terminate the jar with a cookie containing a NULL and the new number of slots you have
allocated.

Though not mentioned previously, it is also advisable to ensure that your cookie isn’t already in
the jar before placing it to avoid two cookies for multiple executions of the same application to
appear.

System Cookies
As of TOS 1.06, the operating system will place several cookies in the cookie jar to inform
applications of certain operating system and hardware capabilities as follows:

cookie value
_CPU The low WORD of the CPU cookie contains a number representing

the processor installed in the system as follows:
Value Processor

0 68000
10 68010
20 68020
30 68030

_VDO This cookie represents the revision of the video shifter present. The
low WORD represents the minor revision number and the high
WORD represents the major revision number. Currently valid values
are:

Major Minor Shifter
0 0 ST
1 0 STe
2 0 TT030
3 0 Falcon030

The Cookie Jar – 3.11

T H E A T A R I C O M P E N D I U M

_FPU This cookie identifies the presence of floating-point math capabilities
in the system. A non-zero low WORD indicates the presence of
software floating point support (no specific values have yet been
assigned). The high WORD indicates the type of coprocessor
currently connected to the system as follows:

Value Meaning
0 No FPU is installed.
1 SFP004
2 68881 or 68882
3 68881 or 68882 and SFP004
4 68881
5 68881 and SFP004
6 68882
7 68882 and SFP004
8 68040 Internal
9 68040 Internal and SFP004

_FDC This cookie indicates the capability of the currently connected floppy
drive. The lowest three bytes is a code indicating the origin of the unit
(‘ATC’ is an Atari unit). The upper byte is a value indicating the
highest density floppy present as follows:

Value Density
0 360 Kb/ 720 Kb
1 1.44 Mb
2 2.88 Mb

_SND This cookie contains a bitmap of sound features available to the
system as follows:

Bit Feature
0 GI Sound Chip (PSG)
1 Stereo 8-bit Playback
2 DMA Record (w/XBIOS)
3 16-bit CODEC
4 DSP

_MCH This cookie indicates the machine type with the major revision
number in the high WORD and the minor revision number in the low
WORD as follows:

Major Minor Shifter
0 0 ST
1 0 STe
1 8 ST Book
1 16 Mega STe
2 0 TT030
3 0 Falcon030

_SWI On machines that contain internal configuration dip switches, this
value specifies their positions as a bitmap. Dip switches are
generally used to indicate the presence of additional hardware which
will be represented by other cookies.

_FRB This cookie is present when alternative RAM is present. It points to a
64k buffer that may be used by DMA device drivers to transfer
memory between alternative RAM and ST RAM for DMA operations.

_FLK The presence of this cookie indicates that file and record locking
extensions to GEMDOS exist. The value field is a version number
currently undefined.

3.12 – BIOS

T H E A T A R I C O M P E N D I U M

_NET This cookie indicates the presence of networking software. The
cookie value points to a structure which gives manufacturer and
version information as follows:

struct netinfo
{

LONG publisher;
LONG version;

};

_IDT This cookie defines the currently configured date and time format,
Bits #0-7 contain the ASCII code of the date separator. Bits #8-11
contain a value indicating the date display format as follows:

Value Meaning
0 MM-DD-YY
1 DD-MM-YY
2 YY-MM-DD
3 YY-DD-MM

Bits #12-15 contain a value indicating the time format as follows:

Value Meaning
0 12 hour
1 24 hour

Note: The value of this cookie does not affect any of the internal time
functions. It is intended for informational use by applications only.

_AKP This cookie indicates the presence of an Advanced Keyboard
Processor. The high word of this cookie is currently reserved. The
low word indicates the language currently used by TOS for keyboard
interpretation and alerts. See the explanation for the country code in
the OS header earlier in this chapter for valid values.

If this cookie is present on TOS 5.0 and higher then the system
supports soft-loaded keyboard tables.

FSMC This cookie indicates the presence of FSM or SpeedoGDOS . Its
value field is a pointer to a structure as follows:

typedef struct
{

LONG gdos_type;
UWORD version;
WORD quality;

} GDOS_INFO;

The gdos_type field determines the variety of GDOS. ‘_FSM’
represents Imagen font-based FSM whereas ‘_SPD’ represents
Bitstream font-based FSM. version specifies the current GDOS
version.

quality determines the output quality of v_updwk() . The default
setting is QUAL_DEFAULT (0xFFFF) which causes the driver to
use the setting last set in the driver configuration accessory or CPX.
This default setting may be overridden by placing a value of
QUAL_DRAFT (0x0000) or QUAL_FINAL (0x0001) at this location.
The quality setting should be restored to QUAL_DEFAULT at the
end of each print job.

BIOS Devices – 3.13

T H E A T A R I C O M P E N D I U M

SAM\0 This cookie indicates the presence of System Audio Manager and
the XBIOS extensions it provides. The value field is currently
reserved for internal use.

MiNT This cookie indicates the presence of MiNT (MultiTOS) and its
value field is the current version number (ex: MiNT 1.02 has a value
field of 0x00000102).

BIOS Devices

The BIOS provides access to six default devices (numbered 0–5). In addition, TOS 2.00
provides the ability to add extra devices with the XBIOS Bconmap() function (see the XBIOS
overview for more information). Device assignments higher than device five are dependent upon
the machine and any third-party enhancements. The following list indicates the device
assignments which remain constant:

Name Device
Number

GEMDOS
Filename Meaning

DEV_PRINTER 0 PRN: Centronics Parallel Port
DEV_AUX 1 AUX: Default Serial Device (this device number could actually

refer to any serial device connected to the system
depending on which was mapped with Bconmap())

DEV_CON 2 CON: Console (screen device)
DEV_MIDI 3 N/A MIDI Ports
DEV_IKBD 4 N/A Intelligent Keyboard Controller
DEV_RAW 5 N/A Console (no interpretation)

The Console Device
Two methods are provided for outputting characters to the screen. Output via BIOS device #2
subjects character codes to interpretation. Codes such as a carriage return (ASCII 13), line feed
(ASCII 10), TAB (ASCII 9), CTRL-G (ASCII 7), and ESCAPE (ASCII 27) are interpreted as special
cases and handled specially.

Output via BIOS device #5 causes all characters to be output literally to the screen without
interpretation.

The VT-52 Emulator
The Atari console device contains emulation code compatible with the VT-52 standard. Special
escapes may be used to manipulate the cursor and create text effects.

To send an escape sequence, one of the following codes (and possibly additional characters)
must be sent following the ESCAPE character (ASCII 27):

Escape Code Effect
A 65 Move the cursor up one line. If the cursor is on the top line this does

nothing.
B 66 Move the cursor down one line. If the cursor is on the bottom line this

does nothing.

3.14 – BIOS

T H E A T A R I C O M P E N D I U M

C 67 Move the cursor right one line. If the cursor is on the far right of the
screen this does nothing.

D 68 Move the cursor left one line. If the cursor is on the far left of the screen
this does nothing.

E 69 Clear the screen and place the cursor at the upper-left corner.
H 72 Move the cursor to the upper-left corner of the screen.
I 73 Move the cursor up one line. If the cursor is on the top line, the screen

scrolls down one line.
J 74 Erase the screen downwards from the current position of the cursor.
K 75 Clear the current line to the right from the cursor position.
L 76 Insert a line by scrolling all lines at the cursor position down one line.
M 77 Delete the current line and scroll lines below the cursor position up

one line.
Y 89 Position the cursor at the coordinates given by the following two

codes. The screen starts with coordinates (32, 32) at the upper-left of
the screen. Coordinates should be presented in reverse order, Y and
then X.

b 98 This code is followed by a character from which the lowest four bits
determine a new text foreground color.

c 99 This code is followed by a character from which the lowest four bits
determine a new text background color.

d 100 Erase the screen from the upper-left to the current cursor position.
e 101 Enable the cursor.
f 102 Disable the cursor.
j 106 Save the current cursor position. (Only implemented as of TOS 1.02)
k 107 Restore the current cursor position. (Only implemented as of TOS

1.02)
l 108 Erase the current line and place the cursor at the far left.
o 111 Erase the current line from the far left to the current cursor position.
p 112 Enable inverse video.
q 113 Disable inverse video.
v 118 Enable line wrap.
w 119 Disable line wrap.

Media Change

The BIOS function Mediach() returns the current media-change status of the drive specified.
This state is used to determine if a disk has been changed in removable media drives (floppies,
removable hard drives, etc.

The Getbpb() incorrectly resets the media change state. Failure to properly reset this state after
calling Getbpb() can cause data loss. The function _mediach(), shown below, forces the
Mediach() function to return a ‘definitely changed’ state and should always be called after
calling Getbpb() on removable media drives.

/*
 * _mediach(): force the media ‘changed’ state on a removable drive.
 *
 * Usage: errcode = _mediach(devno) - returns 1 if an error occurs
 *
 * Inputs: devno - (0 = ‘A:’, 1 = ‘B:’, etc...)
 *

Media Change – 3.15

T H E A T A R I C O M P E N D I U M

 */

.globl _mediach

_mediach:
move.w 4(sp),d0
move.w d0,mydev
add.b #’A’,d0
move.b d0,fspec ; Set drive spec for search

loop:
clr.l -(sp) ; Get supervisor mode, leave old SSP
move.w #$20,-(sp) ; and “Super” function code on stack.
trap #1
addq.l #6,sp
move.l d0,-(sp)
move.w #$20,-(sp)

move.l $472,oldgetbpb
move.l $47e,oldmediach
move.l $476,oldrwabs

move.l #newgetbpb,$472
move.l #newmediach,$47e
move.l #newrwabs,$476

; Fopen a file on that drive
move.w #0,-(sp)
move.l #fspec,-(sp)
move.w #$3d,-(sp)
trap #1
addq.l #8,sp

; Fclose the handle
tst.l d0
bmi.s noclose

move.w d0,-(sp)
move.w #$3e,-(sp)
trap #1
addq.l #4,sp

noclose:
moveq #0,d7
cmp.l #newgetbpb,$472 ; still installed?
bne.s done

move.l oldgetbpb,$472 ; Error, restore vectors.
move.l oldmediach,$47e
move.l oldrwabs,$476

trap #1 ; go back to user mode
addq.l #6,sp ; restore sp

moveq.l #1,d0 ; 1 = Error
rts

done:
trap #1 ; go back to user mode
addq.l #6,sp ; from stack left above

clr.l d0 ; No Error

3.16 – BIOS

T H E A T A R I C O M P E N D I U M

rts

/*
 * New Getbpb()...if it’s the target device, uninstall vectors.
 * In any case, call normal Getbpb().
 */

newgetbpb:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldg

move.l oldgetbpb,$472 ; Got target device so uninstall.
move.l oldmediach,$47e
move.l oldrwabs,$476

dooldg: move.l oldgetbpb,a0 ; Go to real Getbpb()
jmp (a0)

/*
 * New Mediach()...if it’s the target device, return 2. Else call old.
 */

newmediach:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldm
moveq.l #2,d0 ; Target device, return 2

rts

dooldm:
move.l oldmediach,a0 ; Call old
jmp (a0)

/*
 * New Rwabs()...if it’s the target device, return E_CHG (-14)
 */

newrwabs:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldr
moveq.l #-14,d0
rts

dooldr:
move.l oldrwabs,a0
jmp (a0)

.data

fspec: dc.b “X:\\X”,0
mydev: ds.w 1
oldgetbpb: ds.l 1
oldmediach: ds.l 1
oldrwabs: ds.l 1

.end

BIOS Vectors – 3.17

T H E A T A R I C O M P E N D I U M

BIOS Vectors

Reset Vector
Shortly after a warm boot the OS will jump to the address contained in the system variable
resvector ($42A) if the value in the system variable resvalid ($426) contains the magic number
$31415926. The OS will supply a return address to this code segment in register A6 but the
subroutine must not utilize the stack as neither stack pointer will be valid.

 If your process needs to do cleanup in the event of a warm reset (see “Placing a Cookie” earlier
in this chapter) the following code installs a user routine to accomplish this.

_resvalid equ $426
_resvector equ $42A
RESMAGIC equ $31415926

.text

installres:
move.l _resvalid,oldvalid
move.l _resvector,oldvector
move.l #myresvec,_resvector
move.l #RESMAGIC,_resvalid
rts

myresvec:
*
* Insert user code here
*
move.l oldvector,_resvector
move.l oldvalid,_resvalid
jmp (a6)

.bss

oldvector: ds.l 1
oldvalid: ds.l 1

.end

3.18 – BIOS

T H E A T A R I C O M P E N D I U M

System Bell Vector
As of TOS 1.06, the OS jumps through the address contained in the system variable bell_hook
($5AC) to ring the system bell. It is possible for a custom routine to hook into this vector to alter
the bell sound. The user routine may modify registers D0-D2/A0-A2 and may chain to the old
bell handler if desired. It is also safe to make BIOS and XBIOS calls following the procedure
for calling from an interrupt (when not running under MultiTOS). The routine should either jump
to the old handler or execute an RTS statement.

System Keyclick Vector
Similar to the system bell vector, another vector is called each time a keyclick sound is
generated. This vector is stored in system variable kcl_hook ($5B0) and is entered with the
keycode (not the ASCII code) of the key struck in the low byte of D0. Registers D1-D2/A0-A2
may be modified, however, all other registers including D0 must be maintained. The
replacement handler may either chain to a new handler or RTS.

Deferred Vertical Blank Handlers
Applications may install custom routines which are called during every vertical blank (approx.
50-72 times per second). The OS performs several operations during the vertical blank as
follows:

• The system variable _frclock is incremented.

• The system variable vblsem is tested. If 0, the vertical blank handler exits
immediately.

• All registers are saved.

• The system variable _vbclock is incremented.

• If the system is currently in a high resolution video mode and a low-resolution
monitor is detected, the video resolution is adjusted and the vector found at system
variable swv_vec is called.

• The text cursor blink routine is called.

• If a new palette has been selected since the last vertical blank, it is loaded.

• If a new screen base address has been selected since the last vertical blank, it is
selected.

• Each of the “deferred” vertical blank routine handlers is called.

• If the system variable prt_cnt is greater than -1, the vector at system variable
scr_dump is called.

• Saved registers are restored and processing continues.

To install a routine to be called as a “deferred” vertical blank handler, you must inspect the list
of handler vectors at vblqueue for a NULL slot, replace it with your vector and initialize the
next slot to NULL . The system variable nvbls indicates the number of slots pointed to by

The XBRA Protocol – 3.19

T H E A T A R I C O M P E N D I U M

vblqueue. If the vertical blank handler list is filled, you may allocate a new area, copy the old
list of handlers with your handler, and update the pointer vblqueue and nvbls.

The XBRA Protocol

Many applications that add functionality to the system do so by ‘hooking’ themselves into one or
more interrupt or pass-through vectors (usually with Setexc()). Most vector handlers work by
executing the relevant code when the interrupt is called and then calling the original vector
handler. When several applications handle one vector, a vector ‘chain’ is created. This chain
makes it difficult for debuggers or the process itself to ‘unhook’ itself from the chain.

The XBRA protocol was designed so that processes that wish to be able to unhook themselves
may and so that debuggers can trace the ‘chain’ of vector handlers. Following the protocal is
simple. Prior to the first instruction of the vector handler, insert three longwords into the
application as follows:

• The longword ‘XBRA’ 0x58425241.

• Another longword containing the application ‘cookie’ ID (this is the same as that
put into the cookie jar if applicable).

• A longword into which should be placed the address of the original handler.

The following code example shows how to correctly use the XBRA protocol in a routine
designed to supplement the 680x0 TRAP #1 vector (GEMDOS):

instl_trap1:
move.l #my_trap1,-(sp)
move.w #VEC_GEMDOS,-(sp)
move.w #Setexc,-(sp)
trap #13
addq.l #8,sp
move.l d0,old_handler
rts

DC.L ‘XBRA’
DC.L ‘SDS1’ ; Put your cookie here

old_handler DC.L 0

my_trap1:
movem.l d2-d7/a2-a6,-(sp)

;
; Your TRAP #1 handler goes here.
;

movem.l (sp)+,d2-d7/a2-a6
move.l old_handler,-(sp) ; Fake a

return
rts ; to old code.

3.20 – BIOS

T H E A T A R I C O M P E N D I U M

The following ‘C’ function is an example of how to use the XBRA protocol to unhook a vector
handler from the XBRA chain. This function will only work if all installed vector handlers
follow the XBRA protocol. It takes a Setexc() vector number and an XBRA application id
cookie as a parameter. It returns the address of the routine that was unhooked or 0L if
unsuccessful.

typedef struct xbra
{

LONG xbra_id;
LONG app_id;
VOID (*oldvec)();

} XBRA;

LONG
unhook_xbra(WORD vecnum, LONG app_id)
{

XBRA *rx;
LONG vecadr, *stepadr, lret = 0L;
char *savessp;

vecadr = Setexc(vecnum, VEC_INQUIRE);
rx = (XBRA *)(vecadr - sizeof(XBRA));

/* Set supervisor mode for search just in case. */
savessp = Super(SUP_SET);

/* Special Case: Vector to remove is first in chain. */
if(rx->xbra_id == ‘XBRA’ && rx->app_id == app_id)
{

Setexc(vecnum, rx->oldvec);
return vecadr;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));
while(rx->xbra_id == ‘XBRA’)
{

if(rx->app_id == app_id)
{

*stepadr = lret = (LONG)rx->oldvec;
break;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));

}

Super(savessp);
return lret;

}

BIOS Function Calling Procedure – 3.21

T H E A T A R I C O M P E N D I U M

BIOS Function Calling Procedure

BIOS system functions are called via the TRAP #13 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

The BIOS may utilize registers D0-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example for Bconout() illustrates calling the BIOS from assembly language:

move.w #char,-(sp)
move.w #dev,-(sp)
move.w #$03,-(sp)
trap #13
addq.l #6,sp

A ‘C’ binding for a generic BIOS handler would be as follows:

_bios:
; Save the return code from the stack
move.l (sp)+,trp13ret
trap #13
move.l trp13ret,-(sp)
rts

.bss
trp13ret:

.ds.l 1

With the above code, you could easily design a ‘C’ macro to add BIOS calls to your compiler
as in the following example for Bconout():

#define Bconout(a) bios(0x02, a)

The BIOS is re-entrant to three levels, however there is no error checking performed so
interrupt handlers should avoid intense BIOS usage. In addition, no disk or printer usage should
be attempted from the system timer interrupt, critical error, or process-terminate handlers.

Calling the BIOS from an Interrupt
The BIOS and XBIOS are the only two OS sub-systems which can be called from an interrupt
handler. Precisely one interrupt handler at a time may use the BIOS as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2

myhandler:
sub.l #savamt,savptr

3.22 – BIOS

T H E A T A R I C O M P E N D I U M

; BIOS calls may be performed here

add.l #savamt,savptr

rte ; (or rts?)

This method is not valid under MultiTOS .

