
T H E A T A R I C O M P E N D I U M

– CHAPTER 8 –

LINE-A

Overview – 8.3

T H E A T A R I C O M P E N D I U M

Overview

The Line-A portion of the operating system is so named because it uses a special exception
vector of 680x0 processors triggered when the first nibble of the a command word is $A. On
Atari systems this vector is routed to the operating system ROMs and provides a low-level yet
high-speed graphics interface.

The Line-A system is included in this document for completeness only. It is recommended that
its use be avoided and that the counterpart VDI calls be used instead. Atari has not guaranteed
that it will maintain Line-A compatibility in future systems. Its functionality has already been
limited as video capabilities have advanced beyond its design.

The Line-A Variable Table

The Line-A opcode $A000 will return a pointer to an internal variable table in D0 and A0. This
table is used by the Line-A functions as a parameter passing mechanism as opposed to using the
stack or internal registers.

Members of the Line-A variable table are accessed via offsets from the base address. The
function, location, and size of documented variables are as follows:

Name Offse
t

Size Contents

RESERVED -910 LONG Reserved for future use.
CUR_FONT -906 LONG Pointer to the current font header.
RESERVED -902 92 BYTEs Reserved for future use.
M_POS_HX -856 WORD X Offset into the mouse form of the ‘hot spot’.
M_POS_HY -854 WORD Y Offset into the mouse form of the ‘hot spot’.
M_PLANES -852 WORD Writing mode for the mouse pointer (1 = VDI Mode, -1

= XOR Mode). Defaults to VDI mode.
M_CDB_BG -850 WORD Mouse pointer background color.
M_CDB_FG -848 WORD Mouse pointer foreground color.
MASK_FORM -846 32 WORDs Image and Mask for the mouse pointer. Data is stored

in the following format:

Line 0 Mask
Line 0 Image
Line 1 Mask
Line 1 Image
etc.

INQ_TAB -782 46 WORDs This area contains 45 WORDs of information returned
from a vq_extnd() of the physical screen workstation
plus one extra reserved WORD.

DEV_TAB -692 46 WORDs This area contains the first 45 WORDs of information
returned from a v_opnwk() of the physical screen
workstation plus one extra reserved WORD.

GCURX -602 WORD Current mouse pointer X position.
GCURY -600 WORD Current mouse pointer Y position.

8.4 - Line-A

T H E A T A R I C O M P E N D I U M

M_HID_CT -598 WORD Current mouse ‘hide’ count (number of times mouse
has been hidden, 0 = visible).

MOUSE_BT -596 WORD Bitmap of the current mouse button status.
REQ_COL -594 48 WORDs Contains 48 WORDs of RGB data for the first 16 VDI

color registers as would be returned by vq_color() .
SIZ_TAB -498 15 WORDs This table contains the final 12 WORDs of information

returned from a v_opnwk() of the physical screen
workstation plus 3 reserved WORDs.

RESERVED -468 WORD Reserved for future use.
RESERVED -466 WORD Reserved for future use.
CUR_WORK -464 LONG Pointer to the current VDI workstation attribute table.
DEF_FONT -460 LONG Pointer to the default font header.
FONT_RING -456 4 LONGs This area contains three pointers and a NULL . The first

two pointers point to linked lists of system font headers.
The third pointer points to the linked list of GDOS
based fonts.

FONT_COUNT -440 WORD Total number of fonts pointed to by the FONT_RING
pointers.

RESERVED -438 90 BYTEs Reserved for future use.
CUR_MS_STAT -348 BYTE Bitmap of mouse status since the last interrupt as

follows:

Bit Meaning
0 Left mouse status (0=up)
1 Right mouse status (0=up)
2 Reserved
3 Reserved
4 Reserved
5 Mouse move flag (1=moved)
6 Right mouse status flag

(0=hasn’t changed)
7 Left mouse status flag

(0=hasn’t changed)
RESERVED -347 BYTE Reserved for future use.
V_HID_CNT -346 WORD Number of times the text cursor has been hidden (0 =

visible).
CUR_X -344 WORD X position where mouse pointer will be drawn.
CUR_Y -342 WORD Y position where mouse pointer will be drawn.
CUR_FLAG -340 BYTE Mouse redraw flag (if non-zero, mouse pointer will be

redrawn at the next vertical blank interrupt).
MOUSE_FLAG -339 BYTE Mouse interrupt flag (0=disable interrupts)
RESERVED -338 LONG Reserved for future use.
V_SAV_XY -334 2 WORDs X and Y position of the text cursor as saved by the VT-

52 emulator.
SAVE_LEN -330 WORD Height of the form saved in SAVE_AREA in pixels.
SAVE_ADDR -328 LONG Address of the first WORD of screen data contained in

SAVE_AREA .
SAVE_STAT -324 LONG Save status flag as follows:

Bit Meaning
0 Save buffer valid? (0=no)
1 Width of save

(0=16 bits, 1=32 bits)
SAVE_AREA -322 256 BYTEs Save buffer for the mouse pointer,

The Line-A Variable Table – 8.5

T H E A T A R I C O M P E N D I U M

USER_TIM -66 LONG Pointer to a routine which occurs at each timer tick.
(use vex_timv() instead). Routine ends by jumping to
function pointed to by NEXT_TIM.

NEXT_TIM -62 LONG See above.
USER_BUT -58 LONG Pointer to a routine called each time a mouse button is

pressed (use vex_butv() instead).
USER_CUR -54 LONG Pointer to a routine called each time the mouse needs

to be rendered (use vex_curv() instead).
USER_MOT -50 LONG Pointer to routine called each time the mouse is moved

(use vex_motv() instead).
V_CEL_HT -46 WORD Current text cell height.
V_CEL_MX -44 WORD Number of text columns – 1.
V_CEL_MY -42 WORD Number of text rows – 1.
V_CEL_WR -40 WORD Number of bytes between character cells.
V_CEL_BG -38 WORD Text background color.
V_COL_FG -36 WORD Text foreground color.
V_CUR_AD -34 LONG Text cursor physical address.
V_CUR_OF -30 WORD Offset (in bytes) from physical screen address to the top

of the first text character.
V_CUR_XY -28 2 WORDs X and Y character position of the text cursor.
V_PERIOD -24 BYTE Current cursor blink rate.
V_CUR_CT -23 BYTE Countdown timer to next blink.
V_FNT_AD -22 LONG Pointer to system font data (monospaced).
V_FNT_ND -18 WORD Last ASCII character in font.
V_FNT_ST -16 WORD First ASCII character in font.
V_FNT_WD -14 WORD Width of the system font form in bytes.
V_REZ_HZ -12 WORD Horizontal pixel resolution.
V_OFF_AD -10 LONG Pointer to font offset table.
RESERVED -6 WORD Reserved for future use.
V_REZ_VT -4 WORD Vertical pixel resolution.
BYTES_LIN -2 WORD Bytes per screen line.
PLANES 0 WORD Number of planes in the current resolution.
WIDTH 2 WORD Width of the destination form in bytes.
CONTRL 4 LONG Pointer to the CONTRL array.
INTIN 8 LONG Pointer to the INTIN array.
PTSIN 12 LONG Pointer to the PTSIN array.
INTOUT 16 LONG Pointer to the INTOUT array.
PTSOUT 20 LONG Pointer to the PTSOUT array.
COLBIT0 24 WORD Color bit value used for plane 0.
COLBIT1 26 WORD Color bit value used for plane 1.
COLBIT2 28 WORD Color bit value used for plane 2.
COLBIT3 30 WORD Color bit value used for plane 3.
LSTLIN 32 WORD Last pixel draw flag (0=draw, 1=don’t draw). Used to

prevent the last pixel in a polyline segment drawn in
XOR mode from overwriting the first pixel in the next
line.

LNMASK 34 WORD Line draw pattern mask.
WMODE 36 WORD VDI writing mode.
X1 38 WORD X coordinate for point 1.
Y1 40 WORD Y coordinate for point 1.
X2 42 WORD X coordinate for point 2.
Y2 44 WORD Y coordinate for point 2.
PATPTR 46 LONG Fill-pattern pointer.

8.6 - Line-A

T H E A T A R I C O M P E N D I U M

PATMSK 50 WORD This value is AND’ed with the value in Y1 to give an
index into the current fill pattern for the current line.

MFILL 52 WORD Multiplane fill pattern flag (0=Mono).
CLIP 54 WORD Clipping flag (0=disabled).
XINCL 56 WORD Left edge of clipping rectangle.
XMAXCL 58 WORD Right edge of clipping rectangle.
YMINCL 60 WORD Top edge of clipping rectangle.
YMAXCL 62 WORD Bottom edge of clipping rectangle.
XDDA 64 WORD Text scaling accumulator (set to $8000 prior to blitting

text).
DDAINC 66 WORD Scaling increment. If SIZE1 is the actual point size and

SIZE2 is the desired point size then to scale up use:

DDAINC
SIZE SIZE

SIZE
=

−
256

2 1

1
*

()

To scale down use:

DDAINC
SIZE

SIZE
= 256

2

1
*

SCALDIR 68 WORD Text scaling direction (0=down, 1=up).
MONO 70 WORD Monospaced font flag.
SOURCEX 72 WORD X coordinate of character in font form.
SOURCEY 74 WORD Y coordinate of character in font form.
DESTX 76 WORD X position on screen to output character at.
DESTY 78 WORD Y position on screen to output character at.
DELX 80 WORD Width of the character to output.
DELY 82 WORD Height of the character to output.
FBASE 84 LONG Pointer to the font character image block.
FWIDTH 88 WORD Width of the font form in bytes.
STYLE 90 WORD Special effects flag bitmap as follows:

Bit Meaning
0 Thickening
1 Lightening
2 Skewing
3 Underlining

(not supported by Line-A)
4 Outlining

LITEMASK 92 WORD Mask to lighten text (usually $5555).
SKEWMASK 94 WORD Mask to skew text (usually $5555).
WEIGHT 96 WORD Width to thicken characters by.
ROFF 98 WORD Offset above baseline used for italicizing.
LOFF 100 WORD Offset below baseline used for italicizing.
SCALE 102 WORD Text scaling flag (0=no scale).
CHUP 104 WORD Character rotation angle in tenths of degrees

(supported only in 90 degree increments).
TEXTFG 106 WORD Text foreground color.
SCRTCHP 108 LONG Pointer to two contiguous scratch buffers used in

creating text special effects.
SCRPT2 112 WORD Offset from first buffer to second (in bytes).
TEXTBG 114 WORD Text background color.
COPYTRAN 116 WORD Copy raster mode (0=Opaque, 1=Transparent).

Line-A Font Headers – 8.7

T H E A T A R I C O M P E N D I U M

SEEDABORT 118 LONG Pointer to a routine called by the seedfill routine at each
line. If not needed during a seed fill you should point it to
a routine like the following:

seedabort:
sub.l d0,d0
rts

Line-A Font Headers

Raster system and GDOS fonts are linked to form a list of font headers which contain the
information needed to render text. Outline text generated by FSM is inaccessible in this manner.

Each monospaced font contains a font header, character and horizontal offset table, and font
form. All data types are in “Little Endian” (Intel format) and as such must be byte-swapped
before use.

The font form is a raster form with each character laid side-by-side on the horizontal plane. The
first character is WORD aligned but padding within the form only occurs at the end of a scanline
to force the next scanline to be WORD aligned.

Each font header contains a pointer to the next font in the list. The list is terminated by a NULL
pointer. The font header format is as follows:

Name Offset Type Contents
font_id 0 WORD Font ID number (must be unique).
point 2 WORD Point size of font.
name 4 32 BYTEs ASCII Name of font.
first_ade 36 UWORD First ASCII character in font.
last_ade 38 UWORD Last ASCII character in font.
top 40 UWORD Distance from the top line of the font to the baseline.
ascent 42 UWORD Distance from the ascent line of the font to the baseline.
half 44 UWORD Distance from the half line of the font to the baseline.
descent 46 UWORD Distance from the descent line of the font to the baseline.
bottom 48 UWORD Distance from the bottom line of the font to the baseline.
max_char_width 50 UWORD Width of the widest character in the font.
max_cell_width 52 UWORD Width of the widest character cell in the font.
left_offset 54 UWORD Amount character slants left when skewed.
right_offset 56 UWORD Amount character slants right when skewed.
thicken 58 UWORD Number of pixels to smear for thickening.
ul_size 60 UWORD Size of an appropriate underline for the font.
lighten 62 UWORD Mask for character lightening.
skew 64 UWORD Mask for character skewing.
flags 66 UWORD Font type flags.
hor_table 68 LONG Pointer to the horizontal offset table. The horizontal offset

table is an array of bytes with one entry per character
denoting the pixel offset to the character.

8.8 - Line-A

T H E A T A R I C O M P E N D I U M

off_table 72 LONG Pointer to the character offset table. The character offset
table is an array of WORDs with one entry per character
denoting the byte offset into the font form of the
character.

dat_table 76 LONG Pointer to the character data.
form_width 80 UWORD Width of the font form in bytes.
form_height 82 UWORD Height of the font form in pixels.
next_font 84 LONG Pointer to the next font in the list (0=no more fonts).
reserved 88 UWORD Reserved for future use.

Line-A Function Calling Procedure

Line-A functions are called by simply inserting the opcode into the instruction stream. For
example, the ‘Hide Mouse’ function is called with the following assembly language instruction:

dc.w $A00A

Generally, the Line-A initialization function is called ($A000) and the address of the variable
and/or font header tables are stored. Prior to each Line-A call variables are set as explained in
the Line-A Function Reference and the function is then called. There is no method of error
reporting available.

