
T H E A T A R I C O M P E N D I U M

GEMDOS Function Reference

Cauxin() - 2.39

T H E A T A R I C O M P E N D I U M

Cauxin()
WORD Cauxin(VOID)

Cauxin() waits for the next available data byte from GEMDOS handle 2
(normally device ‘aux:’) and when available, returns it in the low byte of the
returned WORD.

OPCODE 3 (0x03)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$3,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The WORD value contains the retrieved byte in the lower eight bits. The contents
of the upper 8 bits are currently undefined.

CAVEATS This function can cause flow control problems.

When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, if this handle is redirected to something other than ‘aux:’, an end-of-
file will hang the system. Besides these known bugs, this function is used by many
‘C’ compilers to redirect standard error messages. It is therefore advisable to use
Bconin() instead.

SEE ALSO Cauxis(), Cauxout(), Bconin()

Cauxis()
WORD Cauxis(VOID)

Cauxis() indicates whether GEMDOS handle 2 (normally device ‘aux:’) has at
least one character waiting.

OPCODE 18 (0x12)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$12,-(sp)

2.40 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

trap #1
addq.l #2,sp

RETURN VALUE The return value will be DEV_READY (-1) if at least one character is available
for reading or DEV_BUSY (0) if not.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, some ‘C’ compilers use this handle as a standard error device. It is
therefore advisable to use Bconstat().

SEE ALSO Cauxin(), Cauxout(), Cauxos(), Bconstat()

Cauxos()
WORD Cauxos(VOID)

Cauxos() indicated whether GEMDOS handle 2 (normally device ‘aux:’) is
ready to receive characters.

OPCODE 19 (0x13)

AVAILABILITY All GEMDOS versions

BINDING move.w #$13,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE A value of DEV_READY (-1) is returned if the output device is ready to receive
characters or DEV_BUSY (0) if it is not.

CAVEATS This function actually returns the status of whatever device GEMDOS handle 2 is
redirected to. In addition, some ‘C’ compilers use this handle as a standard error
device. It is therefore recommended that Bcostat() be used instead.

SEE ALSO Cauxin(), Cauxis(), Cauxout(), Bcostat().

Cauxout() - 2.41

T H E A T A R I C O M P E N D I U M

Cauxout()
VOID Cauxout(ch)
WORD ch;

Cauxout() outputs a character to GEMDOS handle 2, normally the ‘aux:’ device.

OPCODE 4 (0x04)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are sent. The upper eight
bits must be 0.

BINDING move.w #ch,-(sp)
move.w #4,-(sp)
trap #1
addq.l #4,sp

CAVEATS This function can cause flow control to fail when GEMDOS handle 2 is directed
to ‘aux:’.

In addition, some ‘C’ compilers use this function as a standard error device. It is
therefore recommended that Bconout() be used in place of this function.

SEE ALSO Cauxin(), Cauxis(), Cauxos(), Bconout()

Cconin()
LONG Cconin(VOID)

Cconin() reads a character (waiting until one is available) from GEMDOS handle
0 (normally ‘con:’).

OPCODE 1 (0x01)

AVAILABILITY All GEMDOS versions.

BINDING move.w #1,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

2.42 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconis(), Cconout(), Cconrs(), Cnecin(), Crawin(), Bconin()

Cconis()
WORD Cconis(VOID)

Cconis() verifies that a character is waiting to be read from GEMDOS handle 0
(normally ‘con:’).

OPCODE 11 (0xB)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$0B,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Cconis() returns a DEV_READY (-1) if a character is available or DEV_BUSY
(0) if not.

SEE ALSO Cconin(), Bconstat()

Cconos() - 2.43

T H E A T A R I C O M P E N D I U M

Cconos()
WORD Cconos(VOID)

Cconos() checks to see whether a character may be output to GEMDOS handle 1
(normally ‘con:’).

OPCODE 16 (0x10)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$10,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE This function returns DEV_READY (-1) if at least one character may be sent or
DEV_BUSY (0) if not.

SEE ALSO Cconout(), Bcostat()

Cconout()
VOID Cconout(ch)
WORD ch;

Cconout() outputs one character via GEMDOS handle 1 (normally ‘con:’).

OPCODE 2 (0x02)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are sent through the
output stream. The upper eight bits must be 0.

BINDING move.w ch,-(sp)
move.w #2,-(sp)
trap #1
addq.l #4,sp

CAVEATS With GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is done at the time of output. To start a new line, ASCII 13

2.44 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

and ASCII 10 must both be sent.

SEE ALSO Cconin(), Bconout()

Cconrs()
VOID Cconrs(str)
char *str;

Cconrs() reads a string from the standard input stream (GEMDOS handle 0) and
echoes it to the standard output stream (GEMDOS handle 1).

OPCODE 10 (0x0A)

AVAILABILITY All GEMDOS versions.

PARAMETERS str should be a character pointer large enough to hold the inputted string. On
function entry, str[0] should be equal to the maximum number of characters to
read.

BINDING pea str
move.w #$0A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE On return, the string buffer passed as a parameter will be filled in with the inputted
characters. str[1] will contain the actual number of characters in the buffer.
(char *) &str[2] is the pointer to the start of the actual string in memory.

Cconrs() will not terminate unless CTRL-C is pressed, the buffer is full or either
RETURN or CTRL-J is pressed.

CAVEATS GEMDOS versions below 0.15 echoes the input to the console even if output has
been redirected elsewhere.

COMMENTS The string Cconrs() creates is not null-terminated. The following keys are
processed by the function:

Key Translation

RETURN End of input. Do not place RETURN in in buffer.

CTRL-J End of line. Do not place CTRL-J in buffer.

CTRL-H Kill last character.

DELETE Kill last character.

CTRL-U Echo input line and start over.

Cconws() - 2.45

T H E A T A R I C O M P E N D I U M

CTRL-X Kill input line and start over.

CTRL-R Echo input line and continue.

CTRL-C Exit program.

When the input stream is redirected, Cconrs() returns 0 in str[1] when the end-of-
file marker is reached.

SEE ALSO Cconin(), Cconws()

Cconws()
VOID Cconws(str)
char *str;

Cconws() writes a string to GEMDOS handle 1 (normally ‘con:’).

OPCODE 9 (0x09)

AVAILABILITY All GEMDOS versions.

PARAMETERS str is a pointer to a null-terminated character string to be written to the output
stream.

BINDING pea str
move.w #$09,-(sp)
trap #1
addq.l #6,sp

CAVEATS With GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is performed on outputted characters so both an ASCII 13
and ASCII 10 must be sent to force a new line. In addition, the system checks for
special keys so a CTRL-C embedded in the string will terminate the process.

SEE ALSO Cconout(), Cconrs()

2.46 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Cnecin()
WORD Cnecin(VOID)

Cnecin() is exactly the same as Cconin() except that the character fetched from the
input stream is not echoed.

OPCODE 8 (0x08)

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #8,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconin(), Bconin()

Cprnos()
WORD Cprnos(VOID)

Cprnos() returns the status of GEMDOS handle 3 (normally ‘prn:’).

OPCODE 17 (0x11)

Cprnout() - 2.47

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #$11,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Cprnos() returns a DEV_READY (-1) if the output stream is ready to receive a
character or DEV_BUSY (0) if not.

SEE ALSO Cprnout() , Bcostat()

Cprnout()
WORD Cprnout(ch)
WORD ch;

Cprnout() sends one character to GEMDOS handle 3 (normally ‘prn:’).

OPCODE 5 (0x05)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower 8 bits are sent to the output stream.
The upper eight bits should be 0.

BINDING move.w ch,-(sp)
move.w #$5,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Cprnout() returns a non-zero value if the function successfully wrote the character
to the printer or 0 otherwise.

COMMENTS No input translation is performed with this call. Therefore, you must send an
ASCII 13 and ASCII 10 to force a new line.

SEE ALSO Bconout()

2.48 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Crawcin()
LONG Crawcin(VOID)

Crawcin() is similar to Cconout(), however it does not process any special keys
and does not echo the inputted character.

OPCODE 7 (0x07)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$07,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, when GEMDOS handle 0 is being read from, no
special system keys, including CTRL-C, are checked.

SEE ALSO Cconin(), Crawio(), Bconin()

Crawio() - 2.49

T H E A T A R I C O M P E N D I U M

Crawio()
LONG Crawio(ch)
WORD ch;

Crawio() combines console input and output in one function.

OPCODE 6 (0x06)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are meaningful and the
upper eight bits should be set to 0. If ch is 0x00FF on input, Crawio() returns the
character read from GEMDOS handle 0 (normally ‘con:’).

BINDING move.w ch,-(sp)
move.w #6,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE If ch is 0x00FF upon entry, Crawio() returns a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

If no character was waiting in the input stream, Crawio() returns a 0.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

Due to the definition of this call it is impossible to write 0x00FF to the output
stream or read a zero from this call.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, when GEMDOS handle 0 is being read from, no
special system keys, including CTRL-C, are checked.

2.50 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Cconout(), Cconin(), Bconout(), Bconin()

Dclosedir()
LONG Dclosedir(dirhandle)
LONG dirhandle;

Dclosedir() closes the specified directory.

OPCODE 299 (0x12B)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS dirhandle is a valid directory handle which specifies the directory to close.

BINDING move.l dirhandle,-(sp)
move.w #$12B,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dclosedir() returns E_OK (0) if successful or EIHNDL (-37) if the directory
handle was invalid.

SEE ALSO Dopendir(), Dreaddir(), Drewinddir()

Dcntl()
LONG Dcntl(cmd, name, arg)
WORD cmd;
char *name;
LONG arg;

Dcntl() performs file system specific operations on directories or files.

OPCODE 304 (0x130)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS The only two built-in file systems that support Dcntl() calls are ‘U:\’ and
‘U:\DEV.’ cmd specifies what operation to perform and affects the meaning of
name and arg. Valid cmd arguments for ‘U:\’ are

Dcntl() - 2.51

T H E A T A R I C O M P E N D I U M

cmd Meaning

FS_INSTALL
(0xF001)

This mode installs a new file system. name must be ‘U:\’ and arg should
point to a fs_descr structure as follows:

struct fs_descr
{

FILESYS *file_system;
WORD dev_no;
LONG flags;
LONG reserved[4];

};

If this call is successful, a pointer to a kerinfo structure is returned,
otherwise the return value is NULL . The file system itself is not accessible
until this call is made and it is mounted with FS_MOUNT.

FS_MOUNT
(0xF002)

This mode mounts an instance of an installed file system. name should be
in the format ‘U:\???’ where ‘???’ is the name which the file system will be
accessed by. arg should point to the fs_descr structure as above. If the file
system is mounted correctly, the dev_no field will be updated to reflect the
instance number of the mount (file systems may be mounted multiple
times).

FS_UNMOUNT
(0xF003)

This mode unmounts an instance of a file system. name is the name of the
file system in the form ‘U:\???’ where ‘???’ is the name of the file system
instance. arg should point to the file system fs_descr structure.

FS_UNINSTALL
(0xF004)

This mode uninstalls a file system identified by the fs_descr structure
passed in arg. A file system can only be sucessfully uninstalled after all
instances of it have been unmounted. name should be ‘U:\’.

Valid cmd arguments for ‘U:\DEV’ are:

2.52 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

cmd Meaning

DEV_INSTALL
(0xDE02)

This command attempts to install a device driver. name should be in the
format ‘U:\DEV\???’ where ‘???’ is the name of the device to install. arg is
a pointer to a dev_descr structure as follows:

struct dev_descr
{

/* Pointer to a device driver structure */
DEVDRV *driver;
/* Placed in aux field of file cookies */
WORD dinfo;
/* 0 or O_TTY (0x2000) for TTY */
WORD flags;
/* If O_TTY is set, points to tty struct */
struct tty *tty;
/* Reserved for future expansion */
LONG reserved[4];

}

If the device is successfully installed, Dcntl() will return a pointer to a
kerinfo structure which contains information about the kernel. On failure,
Dcntl() will return NULL . See the section on loadable file systems earlier
in this chapter for more information.

DEV_NEWTTY
(0xDE00)

This command identifies a BIOS terminal device whose name is name (in
the form ‘U:\DEV\DEVNAME’ and whose device number is arg. This call
simply makes the MiNT kernel aware of the device. It should have been
previously installed by Bconmap() . Any attempt to access the device
prior to installing it with the BIOS will result in an EUNDEV (-15) unknown
device error. If the device is installed, Dcntl() returns a 0 or positive value.
A negative return code signifies failure.

DEV_NEWBIOS
(0xDE01)

This command is the same as DEV_NEWTTY except that it is designed
for devices which must have their data transmitted raw (SCSI devices, for
example).

BINDING move.l arg,-(sp)
pea name
move.w cmd,-(sp)
move.w #$130,-(sp)
trap #1
lea 12(sp),sp

VERSION NOTES The FS_ group of cmd arguments are only available as of MiNT version 1.08.

Due to a bug in MiNT versions 1.08 and below, calling this function with a
parameter of DEV_NEWBIOS will not have any effect.

RETURN VALUE See above.

SEE ALSO Bconmap(), Fcntl()

Dcreate() - 2.53

T H E A T A R I C O M P E N D I U M

Dcreate()
LONG Dcreate(path)
char *path;

Dcreate() creates a GEMDOS directory on the specified drive.

OPCODE 57 (0x39)

AVAILABILITY All GEMDOS versions.

PARAMETERS path is a pointer to a string containing the directory specification of the directory
to create. path should not contain a trailing backslash. Below are some examples
and their results.

path Result

C:\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
drive ‘C:’.

\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
the current GEMDOS drive.

ATARI Creates a folder named “ATARI” as a subdirectory of the current
GEMDOS path on the current GEMDOS drive.

BINDING pea path
move.w #$39,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of three codes may result:

E_OK (0) : Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied

CAVEATS Prior to GEMDOS version 0.15 GEMDOS did not detect if the creation of a
subdirectory failed and could therefore leave partially created directories on disk.

SEE ALSO Ddelete()

2.54 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Ddelete()
LONG Ddelete(path)
char *path;

Ddelete() removes a directory on the specified drive.

OPCODE 58 (0x3A)

AVAILABILITY All GEMDOS versions.

PARAMETERS path contains the directory specification of the directory you wish to remove. path
should not contain a trailing backslash. For valid examples of path, see the entry
for Dcreate().

BINDING pea path
move.w #$3A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of four codes may result:

E_OK (0) : Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied
EINTRN (-65): Internal error

CAVEATS Prior to GEMDOS version 0.15 a Ddelete() on a directory recently created will
fail but a second attempt will not.

COMMENTS The directory being deleted must be empty or the call will fail.

SEE ALSO Dcreate()

Dfree()
LONG Dfree(buf, drive)
DISKINFO * buf;
WORD drive;

Dfree() returns information regarding the storage capacity/current usage of the
specified drive.

OPCODE 54 (0x36)

Dfree() - 2.55

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS buf is a DISKINFO pointer which will be filled in on function exit. DISKINFO is
defined as:

typedef struct
{

/* No. of Free Clusters */
ULONG b_free;

/* Clusters per Drive */
ULONG b_total;

/* Bytes per Sector */
ULONG b_secsize;

/* Sectors per Cluster */
ULONG b_clsize;

} DISKINFO;

drive is a WORD which indicates the drive to perform the operation on. A value
of DEFAULT_DRIVE (0) indicates the current GEMDOS drive. A value of 1
indicates drive ‘A:’, a 2 indicates ‘B:’, etc...

BINDING move.w drive,-(sp)
pea info
move.w #$36,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Upon return, a value of 0 indicates success. Otherwise, a negative GEMDOS
error code is returned.

CAVEATS Prior to GEMDOS version 0.15 this function is very slow when used on a hard
disk.

COMMENTS To obtain the free number of bytes on a disk, use the formula (info.b_free *
info.b_secsize * info.b_clsize). To obtain the total number of bytes available on a
disk, use the formula (info.b_total * info.b_secsize * info.b_clsize).

2.56 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Dgetcwd()
LONG Dgetcwd(path, drv, size)
char *path;
WORD drv, size;

Dgetcwd() returns the processes’ current working directory for the specified
drive.

OPCODE 315 (0x13B)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.96 exists.

PARAMETERS path is a pointer to a buffer with room for at least size characters into which will
be copied the complete working path of drive drv.

BINDING pea path
move.w size,-(sp)
move.w drv,-(sp)
move.w #$13B,-(sp)
trap #1
add.l #10,sp

RETURN VALUE Dgetcwd() returns 0 if successful or a GEMDOS error code otherwise.

SEE ALSO Dgetpath(), Dgetdrv()

Dgetdrv()
WORD Dgetdrv(VOID)

Dgetdrv() returns the current GEMDOS drive code.

OPCODE 25 (0x19)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$19,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Dgetdrv() returns the current GEMDOS drive code. Drive ‘A:’ is represented by
a return value of 0, ‘B:’ by a return value of 1, and so on.

SEE ALSO Dsetdrv()

Dgetpath() - 2.57

T H E A T A R I C O M P E N D I U M

Dgetpath()
LONG Dgetpath(buf, drive)
char *buf;
WORD drive;

Dgetpath() returns the current GEMDOS path specification.

OPCODE 71 (0x47)

AVAILABILITY All GEMDOS versions.

PARAMETERS buf is a pointer to a character buffer which will contain the current GEMDOS
path specification on function exit. drive is the number of the drive whose path you
want returned. drive should be DEFAULT_DRIVE (0) for the current GEMDOS
drive, 1 for drive ‘A:’, 2 for drive ‘B:’, and so on.

BINDING move.w drive,-(sp)
pea buf
trap #1
addq.l #6,sp

RETURN VALUE Dgetpath() will return one of two errors on function exit:

E_OK (0): Operation successful
EDRIVE (-49): Invalid drive specification

COMMENTS As there is no way to specify the buffer size to this function you should allow at
least 128 bytes of buffer space. This will allow for up to 8 folders deep. Newer
file systems (CD-ROM drives) may demand up to 200 bytes.

SEE ALSO Dsetpath()

Dlock()
LONG Dlock(mode, drv)
WORD mode, drv;

Dlock() locks a BIOS disk device against GEMDOS usage.

OPCODE 309 (0x135)

2.58 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.93 exists.

PARAMETERS Setting mode to DRV_LOCK (1) places a lock on BIOS device drv whereas a
mode setting of DRV_UNLOCK (0) unlocks drv.

BINDING move.w drv,-(sp)
move.w move,-(sp)
move.w #$135,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dlock() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Locking a device provides a method for device formatters to prevent other
processes from simultaneously attempting to access a drive. If a process which
locked a device terminates, that device is automatically unlocked.

BIOS device numbers and GEMDOS drive letters do not necessarily have a one
to one correspondence. To lock a GEMDOS drive use Fxattr() to determine the
device number of the drive you wish to lock.

SEE ALSO Fxattr()

Dopendir()
LONG Dopendir(name, flag)
char *name;
WORD flag;

Dopendir() opens the specified directory for reading.

OPCODE 296 (0x128)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name is a pointer to a null-terminated directory specification of the directory to
open. name should not be contain a trailing backslash.

flag determines whether to open the file in normal or compatibility mode. A value
of MODE_NORMAL (0) for flag signifies normal mode whereas a value of
MODE_COMPAT (1) signifies compatibility mode.

Compatibility mode forces directory searches to be performed much like Fsfirst()
and Fsnext() (restricting filenames to the DOS 8 + 3 standard in uppercase). In
normal mode, filenames returned by Dreaddir() will be in the format native to the

Dpathconf() - 2.59

T H E A T A R I C O M P E N D I U M

file system and a UNIX style file index will be returned.

BINDING move.w flag,-(sp)
pea name
move.w #$128,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Dopendir() returns a LONG directory handle (which may be positive or negative)
if successful. A negative GEMDOS error code will be returned if the call fails.

CAVEATS Failure to properly close directory handles may cause the system to eventually run
out of handles which will cause the OS to fail.

COMMENTS Negative directory handles and negative GEMDOS error codes may be
differentiated by checking for 0xFF in the high byte. Returned values with 0xFF in
the high byte are errors.

SEE ALSO Dclosedir(), Dreaddir(), Drewinddir()

Dpathconf()
LONG Dpathconf(name, mode)
char *name;
WORD mode;

Dpathconf() returns information regarding limits and capabilities of an installed
file system.

OPCODE 292 (0x124)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS name specifies the file system you wish information about. mode dictates the
return value as follows:

Name mode Return Value

DP_INQUIRE -1 Returns the maximum legal value for the mode
parameter in Dpathconf() .

DP_IOPEN 0 Retuns the possible maximum number of open files at
one time. If UNLIMITED (0x7FFFFFFF) is returned, then
the number of open files is limited only by available
memory.

DP_MAXLINKS 1 Returns the maximum number of links to a file. If
UNLIMITED (0x7FFFFFFF) is returned, then the number
of links to a file is limited only by available memory.

2.60 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

DP_PATHMAX 2 Returns the maximum length of a full path name in bytes.
If UNLIMITED (0x7FFFFFFF) is returned, then the
maximum size of a pathname is unlimited.

DP_NAMEMAX 3 Returns the maximum length of a file name in bytes. If
UNLIMITED (0x7FFFFFFF) is returned, then the
maximum length of a filename is unlimited.

DP_ATOMIC 4 Returns the number of bytes that can be written per write
operation. If UNLIMITED (0x7FFFFFFF) is returned,
then the number of bytes that can be written at once is
limited only by available memory.

DP_TRUNC 5 Returns a code indicating the type of filename truncation
as follows:

DP_NOTRUNC (0)
File names are not truncated. If a file name in any system
call exceeds the filename size limit then an ERANGE (-
64) range error is returned.

DP_AUTOTRUNC (1)
File names are truncated automatically to the maximum
allowable length.

DP_DOSTRUNC (2)
File names are truncated to the DOS standard
(maximum 8 character node with 3 character extension).

DP_CASE 6 Returns a code which indicates case sensitivity as
follows:

DP_SENSITIVE (0)
File system is case-sensitive.

DP_NOSENSITIVE (1)
File system is not case-sensitive (file and path names
are always converted to upper-case).

DP_SAVEONLY (2)
File system is not case-sensitive, however, file and path
names are saved in their original case. Ex: A file called
‘Compendi.um’ will appear as ‘Compendi.um’ but may
be referenced as ‘compendi.um’ or ‘COMPENDI.UM’.

BINDING move.w mode,-(sp)
pea name
move.w #$124,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE See above.

SEE ALSO Sysconf()

Dreaddir() - 2.61

T H E A T A R I C O M P E N D I U M

Dreaddir()
LONG Dreaddir(len, dirhandle, buf)
WORD len;
LONG dirhandle;
char *buf;

Dreaddir() enumerates the contents of the specified directory.

OPCODE 297 (0x129)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS Dreaddir() fetches information about the next file contained in the directory
specified by dirhandle. len specifies the length of the buffer pointed to by buf
which should be enough to hold the size of the filename, NULL byte, and index (if
in normal mode).

BINDING pea buf
move.l dirhandle
move.w len
move.w #$129,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Dreaddir() returns a 0 if the operation was successful, ERANGE (-64) if the
buffer was not large enough to hold the index and name, or ENMFIL (-47) if there
were no more files to read.

COMMENTS In normal mode, Dreaddir() returns a 4-byte file index in the first four bytes of
buf. The filename then follows starting at the fifth byte of buf. The file index is
present to prevent confusion under some file systems when two files of the same
name exist. In some file systems this is legal, however, in all file systems, the 4-
byte index will be unique.

When in compatibility mode, the filename begins at &buf[0].

SEE ALSO Dopendir(), Dclosedir(), Drewinddir()

2.62 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Drewinddir()
LONG Drewinddir(handle)
LONG handle;

Drewinddir() rewinds the specified directory pointer to its first file.

OPCODE 298 (0x12A)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS handle specifies the directory handle of the directory to rewind.

BINDING move.l handle,-(sp)
move.w #$12A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Drewinddir() returns a 0 if successful or a negative GEMDOS error code
otherwise.

SEE ALSO Dopendir(), Dreaddir(), Drewinddir()

Dsetdrv()
LONG Dsetdrv(drive)
WORD drive;

Dsetdrv() sets the current GEMDOS drive and returns a bitmap of mounted
drives.

OPCODE 14 (0x0E)

AVAILABILITY All GEMDOS versions.

PARAMETERS drive is the code of the drive to set as the default GEMDOS disk drive. Calling
the function as:

bmap = Dsetdrv(Dgetdrv());

will return the bitmap of mounted drives without changing the current GEMDOS
drive.

BINDING move.w drive,-(sp)

Dsetpath() - 2.63

T H E A T A R I C O M P E N D I U M

move.w #$0E,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Dsetdrv() returns a LONG bit array that indicates which drives are mounted on
the system. Bit 0 indicates drive ‘A:’, bit 1 drive ‘B:’, etc.

SEE ALSO Dgetdrv()

Dsetpath()
LONG Dsetpath(path)
char *path;

Dsetpath() sets the path of the current GEMDOS drive.

OPCODE 59 (0x3B)

AVAILABILITY All GEMDOS versions.

PARAMETERS path is a pointer to a character buffer containing the new path specification for the
current GEMDOS drive.

BINDING pea path
move.w #$3B,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dsetpath() returns one of two return codes on function exit:

E_OK (0): Operation successful
EPTHNF (-34): Path not found

CAVEATS You may specify a drive letter and colon in the input path specification to set the
path of a particular drive but this feature is unstable in all versions of GEMDOS
and may confuse drive assignments. It is therefore advised that this feature be
avoided.

SEE ALSO Dgetpath()

2.64 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fattrib()
LONG Fattrib(fname, flag, attr)
char *fname;
WORD flag, attr;

Fattrib() reads or modifies the attribute bits of a GEMDOS file.

OPCODE 67 (0x43)

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is a pointer to a null-terminated string which contains the GEMDOS
filename of the file to manipulate. flag should be set to FA_INQUIRE (0) to read
the file’s attributes and FA_SET (1) to set them. If you are setting attributes, attr
contains the file’s new attributes.

BINDING move.w attr,-(sp)
move.w flag,-(sp)
pea fname
move.w #$43,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE If reading the attributes, Fattrib() returns a bit array of attributes as defined
below. If setting the attributes, Fattrib() returns the file’s old attributes. In any
case, a negative return code indicates that a GEMDOS error occurred.

Name Bit Meaning

FA_READONLY 0 Read-only flag

FA_HIDDEN 1 Hidden file flag

FA_SYSTEM 2 System file flag

FA_VOLUME 3 Volume label flag

FA_DIR 4 Subdirectory

FA_ARCHIVE 5 Archive flag

— 6... Currently reserved

CAVEATS GEMDOS versions below 0.15 did not set the archive bit correctly. The archive
bit is now correctly set by TOS when a file is created or written to.

Fchmod() - 2.65

T H E A T A R I C O M P E N D I U M

Fchmod()
LONG Fchmod(name, mode)
char *name;
WORD mode;

Fchmod() alters file access permissions of the named file.

OPCODE 306 (0x132)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name specifies a valid GEMDOS file specification of the file whose access
permissions you wish to modify. mode is a bit mask composed by OR’ing together
values defined as follows:

Name Mask Meaning

S_IRUSR 0x100 Read permission for the owner of the file.

S_IWUSR 0x80 Write permission for the owner of the file.

S_IXUSR 0x40 Execute permission for the owner of the file.

S_IRGRP 0x20 Read permission for members of the same group the file
belongs to.

S_IWGRP 0x10 Write permission for members of the same group the file
belongs to.

S_IXGRP 0x08 Execute permission for members of the same group the file
belongs to.

S_IROTH 0x04 Read permission for all others.

S_IWOTH 0x02 Write permission for all others.

S_IXOTH 0x01 Execute permission for all others.

BINDING move.w mode,-(sp)
pea name
move.w #$132,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fchmod() returns E_OK (0) if successful or a negative GEMDOS error code
otherwise.

CAVEATS Not all file systems support all bits. Unrecognized bits will be ignored.

COMMENTS Only the owner of a file may change a file’s permission status.

‘Execute’ status refers to the permission to search the named directory for a file
name or component.

2.66 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Fattrib(), Fxattr()

Fchown()
LONG Fchown(name, uid, gid)
char *name;
WORD uid, gid;

Fchown() changes a file’s ownership.

OPCODE 305 (0x131)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name specifies the file whose ownership status you wish to change. uid sets the
new owner and gid sets the new group.

BINDING move.w gid,-(sp)
move.w uid,-(sp)
pea name
move.w #$131,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fchown() returns 0 if the operation was successful or a negative GEMDOS error
code otherwise.

CAVEATS Most file systems don’t understand the concept of file ownership (including TOS).

COMMENTS uid may only be modifies if the caller’s uid is 0. gid may only be changed to the
group id of a group the caller belongs to.

SEE ALSO Fchmod(), Fxattr()

Fclose()
LONG Fclose(handle)
WORD handle;

Fclose() closes the file specified.

OPCODE 62 (0x3E)

Fcntl() - 2.67

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is a valid WORD file handle which will be closed as a result of this call.

BINDING move.w handle,-(sp)
move.w #$3E,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Fclose() returns E_OK (0) if the file was closed successfully or EIHNDL (-37) if
the handle given was invalid.

CAVEATS Calling this function with an invalid file handle will crash the system on
GEMDOS versions below 0.15. In addition, GEMDOS versions below 0.15 will
become confused if you close a standard GEMDOS handle (0-5).

COMMENTS As of GEMDOS version 0.15, closing a standard GEMDOS handle (0-5) will
simply reset it to its default BIOS state.

SEE ALSO Fcreate(), Fopen()

Fcntl()
LONG Fcntl(handle, arg, cmd)
WORD handle;
LONG arg;
WORD cmd;

Fcntl() performs a command on the specified file.

OPCODE 260 (0x104)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file on which the operation
specified by cmd will affect. arg varies with each command. Valid commands are:

cmd Meaning

F_DUPFD
(0x0000)

Duplicate the given file handle. Fcntl() will return a file handle in the
range arg – 32. If no file handles exist within that range, an error will be
returned.

F_GETFD
(0x0001)

Return the inheritance flag for the specified file. A value of 1 indicates
that child processes started with Pexec() will inherit this file handle,
otherwise a value of 0 is returned. arg is ignored.

2.68 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

F_SETFD
(0x0002)

Set the inheritance flag for the named file. arg specifies if child
processes started with Pexec() will inherit the file handle. A value of 0
indicates that they will not. A value of 1 indicates that they will.
GEMDOS handles 0-5 default to a value of 1whereas other handles
default to a value of 0.

F_GETFL
(0x0003)

Return the file descriptor flags for the specified file. These are the
same flags passed to Fopen() . arg is ignored.

F_SETFL
(0x0004)

Set the file decriptor flags for the specified file to arg. Only user-
modifyable bits are considered. All others should be 0. It is not
possible to change a file’s read/write mode or sharing modes with this
call. Attempts to do this will fail without returning an error code.

F_GETLK
(0x0004)

Test for the presence of a lock on the specified file. arg is a pointer to
a FLOCK structure defined as follows:

typedef struct flock
{

/* Type of lock
 0 = Read-only lock
 1 = Write-only lock
 2 = Read/Write lock */
WORD l_type;
/* 0 = offset from beginning of file
 1 = offset from current position
 2 = offset from end of file */
WORD l_whence;
/* Offset to start of lock */
LONG l_start;
/* Length of lock (0 for rest of file) */
LONG l_len;
/* Process ID maybe filled in by call */
WORD l_pid;

} FLOCK;

If a prior lock exists which would prevent the specified lock from being
applied, the interfering lock is copied into the structure with the
process ID of the locking process. Otherwise, Fcntl() returns
F_UNLCK (3).

F_SETLK
(0x0005)

Set or remove an advisory lock on the specified file. arg points to a
FLOCK structure as defined above.

Setting l_type to F_RDLOCK or F_WRLCK will cause a lock to be
set. Setting l_type to F_UNLCK wil attempt to remove the specified
lock.

When locking and unlocking FIFO’s, l_whence, l_start, and l_len
should be 0.

The command returns 0 if successful or a negative GEMDOS error
code otherwise.

F_SETLKW
(0x0007)

The calling procedure is the same as above, however, if other
processes already have a conflicting lock set, it will suspend the
calling process until the lock is freed.

FSTAT
(0x4600)

Get the extended attributes for a file. arg points to a XATTR structure
which is filled in with the file’s extended attributes. If successful, the
function returns 0, otherwise a negative GEMDOS error code is
returned. See Fxattr() for an explanation of the XATTR structure.

Fcntl() - 2.69

T H E A T A R I C O M P E N D I U M

FIONREAD
(0x4601)

Return an estimate of the number of bytes available for reading from
the specified file without causing the process to block (wait for more
input) in the LONG pointed to by arg.

FIONWRITE
(0x4602)

Return an estimate of the number of bytes that may be written from the
specified file without causing the process to block in the LONG
pointed to by arg.

SHMGETBLK
(0x4D00)

Returns the address of a memory block associated with the file. arg
should be NULL for future compatibility.

Note: Different processes may receive different addresses for a
shared block.

SHMSETBLK
(0x4D01)

arg points to a block of memory (previously allocated) which is to be
associated with the file. The file must have been created at ‘U:\SHM\’
or the call will fail.

PPROCADDR
(0x5001)

Return the address of the specified processes’ control structure
(opened as a file) in arg. See the discussion of MiNT processes for
information about this structure.

PBASEADDR
(0x5002)

Return the address of the specified processes’ GEMDOS basepage
(opened as a file) in arg,

PCTXTSIZE
(0x5003)

Return the length of the specified processes’ context structure
(opened as a file) in arg. Seeking to the offset returned by
PPROCADDR minus this number and reading this many bytes will
yield the current user context of the process. Seeking back this many
bytes more and reading will yield the last system context of the
process. This structure is volatile and is likely to change from one
MiNT version to the next.

PSETFLAGS
(0x5004)

arg is a pointer to a LONG from which the processes’ memory
allocation flags (PRGFLAGS) will be set.

PGETFLAGS
(0x5005)

arg is a pointer to a LONG into which the processes’ memory
allocation flags (PRGFLAGS) will be placed.

PTRACEGFLAGS
(0x5006)

arg points to a WORD which will be filled in with the trace flags of a
process.

Setting bit #0 of arg causes the parent process to receive signals
destined for the child. See the discussion on program debugging for
more information.

PTRACESFLAGS
(0x5007)

arg points to a WORD which will be used to set the trace flags of a
process.

See the discussion on program debugging for more information.
PTRACEGO

(0x5008)
This call restarts a process which was stopped because of a signal.
arg points to a WORD which contains 0 to clear all of the child
processes’ pending signals or the signal value to send to the process.

PTRACEFLOW
(0x5009)

This call restarts a process in a special tracing mode in which the
process is stopped and a SIGTRACE signal is generated whenever
program flow changes (ex: JSR/BSR/JMP/BEQ). arg should be set to
0 to clear all of the pending signals of the process being traced or a
signal value which is to be sent to the child.

PTRACESTEP
(0x500A)

This call restarts a process and allows it to execute one instruction
before a SIGTRAP instruction is generated.

2.70 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PLOADINFO
(0x500C)

arg points to a structure as follows:

struct ploadinfo
{

WORD fnamelen;
char * cmdlin;
char * fname;

};

cmdlin should point to a 128 byte character buffer into which the
processes’ command line will be copied.

fname should point to a buffer fnamelen bytes long into which the
complete path and filename of the process’ parent will be copied. If
the buffer is too short the call will return ENAMETOOLONG .

TIOCGETP
(0x5400)

Get terminal parameters from the TTY device with the specified file
handle. arg is a pointer to an sgttyb structure which is filled in by this
command.

struct sgttyb
{

/* Reserved */
char sg_ispeed;
/* Reserved */
char sg_ospeed;
/* Erase character */
char sg_erase;
/* Line kill character */
char sg_kill;
/* Terminal control flags */
WORD sg_flags;

};

TIOCSETP
(0x5401)

Set the terminal parameters of the TTY device specified. arg is a
pointer to an sgyttb structure as defined above. You should first get
the terminal control parameters, modify what you wish to change, and
then set them with this call.

TIOCGETC
(0x5402)

Get the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure filled in by this call which is defined as
follows:

struct tchars
{

/* Raises SIGINT */
char t_intrc;
/* Raises SIGKILL */
char t_quitc;
/* Starts terminal output */
char t_startc;
/* Stops terminal output */
char t_stopc;
/* Marks end of file */
char t_eofc;
/* Marks end of line */
char t_brkc;

};

TIOCSETC
(0x5403)

Set the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure as defined above. Setting any structure
element to 0 disables that feature.

Fcntl() - 2.71

T H E A T A R I C O M P E N D I U M

TIOCGLTC
 (0x5404)

Get the extended terminal control characters from the TTY device
specified. arg is a pointer to a ltchars structure which is filled in by
this call defined as follows:

struct ltchars
{

/* Raise SIGTSTP now */
char t_suspc;
/* Raise SIGTSTP when read */
char t_dsuspc;
/* Redraws the input line */
char t_rprntc;
/* Flushes output */
char t_flushc;
/* Erases a word */
char t_werasc;
/* Quotes a character */
char t_lnextc;

};

TIOCSLTC
(0x5405)

Set the extended terminal control characters for the TTY device
specified from the ltchars structure pointed to by arg.

TIOCGPGRP
(0x5406)

Return the process group ID for the TTY specified in the LONG
pointed to by arg.

TIOCSPGRP
(0x5407)

Set the process group ID of the TTY specified in the LONG pointed to
by arg.

TIOCSTOP
(0x5409)

Stop terminal output (as if the user had pressed CTRL-S). arg is
ignored.

TIOCSTART
(0x540A)

Restart output to the terminal (as if the user had pressed CTRL-Q) if it
had been previously stopped with CTRL-S or a TIOCSTOP command.
arg is ignored.

TIOCGWINSZ
(0x540B)

Get information regarding the window for this terminal. arg points to a
winsize structure which is filled in by this command.

struct winsize
{

/* # of Text Rows */
WORD ws_row;
/* # of Text Columns */
WORD ws_column;
/* Width of window in pixels */
WORD ws_xpixel;
/* Height of window in pixels */

}

TIOCSWINSZ
(0x540C)

Change the extents of the terminal window for the specified TTY. arg
points to a winsize structure which contains the new window
information. It is up to the window manager to modify the window
extents and raise the SIGWINCH signal if necessary.

2.72 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

TIOCGXKEY
(0x540D)

Return the current definition of a system key. arg points to a structure
xkey as follows:

struct xkey
{

WORD xk_num;
char xk_def[8];

};

xk_def will be filled in with the NULL terminated name associated
with the key specified in xk_num as follows:

xk_num Key
0-9 F1-F10

10-19 F11-F20
20 Cursor up
21 Cursor down
22 Cursor right
23 Cursor left
24 Help
25 Undo
26 Insert
27 Clr/Home
28 Shift+Cursor up
29 Shift+Cursor down
30 Shift+Cursor right
31 Shift+Cursor left

TIOCSXKEY
(0x540E)

Set the current definition of a system key. arg must point to an xkey
structure (as defined above). xk_num and xk_def are used to set the
text associated with a system key.

If a terminal recognizes special keys (by having its XKEY bit set in the
sg_flags field of its sgttyb structure) then setting a system key will
cause the text specified by xk_def to be sent to a process whenever
the key is struck. Note: this works only if the terminal is reading
characters using Fread() .

TIOCIBAUD
(0x5412)

Read/Write the input baud rate for the specified terminal device. If arg
points to a LONG then the input baud rate will be set to that value. If
arg is 0, the DTR on the terminal will be dropped (if this feature is
supported). If arg is negative, the baud rate will not be changed. The
old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCOBAUD
(0x5413)

Read/Write the output baud rate for the specified terminal device. If
arg points to a LONG then the output baud rate will be set to that
value. If arg is 0, the DTR on the terminal will be dropped (if this
feature is supported). If arg is negative, the baud rate will not be
changed. The old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCCBRK
(0x5414)

Clear the break condition on the specified device. arg is ignored.

TIOCSBRK
(0x5415)

Set the break condition on the specified device. arg is ignored.

Fcreate() - 2.73

T H E A T A R I C O M P E N D I U M

TIOCGFLAGS
(0x5416)

Return the current stop bit/data bit configuration for the terminal device
in the lower 16 bits of the LONG pointed to by arg. See the entry for
TIOCSFLAGS for the flags required to parse arg.

TIOCSFLAGS
(0x5417)

Set the current stop bit/data bit configuration for the terminal device.
The new configuration is contained in arg. Valid mask values for arg
are as follows:

Name Mask Meaning
TF_1STOP 0x0001 1 stop bit
TF_15STOP 0x0002 1.5 stop bits
TF_2STOP 0x0003 2 stop bits
TF_8BIT 0x0000 8 data bits
TF_7BIT 0x0004 7 data bits
TF_6BIT 0x0008 6 data bits
TF_5BIT 0x000C 5 data bits

TCURSOFF
(0x6300)

Hide the cursor on the selected terminal device. arg is ignored.

TCURSON
(0x6301)

Show the cursor on the selected terminal device. arg is ignored.

TCURSBLINK
(0x6302)

Enable cursor blinking on the selected terminal device. arg is ignored.

TCURSSTEADY
(0x6303)

Disable cursor blinking on the selected terminal device. arg is
ignored.

TCURSSRATE
(0x6304)

Set the cursor blink rate to the WORD pointed to by arg.

TCURSGRATE
(0x6305)

Return the current cursor blink rate in the WORD pointed to by arg.

BINDING move.w cmd,-(sp)
move.l arg,-(sp)
move.w handle,-(sp)
move.w #$260,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Unless otherwise noted, Fcntl() returns a 0 if the operation was successful or a
negative GEMDOS error code otherwise.

SEE ALSO Flock(), Fopen(), Fxattr(), Pgetpgrp(), Psetpgrp()

Fcreate()
LONG Fcreate(fname, attr)
char *fname;
WORD attr;

Fcreate() creates a new file (or truncates an existing one) with the specified name
and attributes.

OPCODE 60 (0x3C)

2.74 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is a character pointer to the GEMDOS file specification of the file to
create or truncate. attr is a bit array which specifies the attributes of the new file.
Valid mask values are given below:

Name Bit Meaning

FA_READONLY 0 Read-only file

FA_HIDDEN 1 Hidden file

FA_SYSTEM 2 System file

FA_VOLUME 3 Volume label

— 4 Reserved

FA_ARCHIVE 5 Archive bit

BINDING move.w attr,-(sp)
pea fname,-(sp)
move.w #$3C,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fcreate() returns a LONG value. If the LONG is negative, it should be
interpreted as a GEMDOS error. Possible errors are EPTHNF (-34), ENHNDL
(-35) , or EACCDN (-36).

If positive, the WORD portion of the returned LONG should be regarded as the
file handle.

CAVEATS With GEMDOS version 0.13, creating a read-only file returns a read-only file
handle which is of little use. GEMDOS versions below 0.15 incorrectly allow
more than one volume label per disk.

COMMENTS GEMDOS versions 0.15 and above automatically set the archive bit. You may set
it yourself on versions below 0.15.

SEE ALSO Fopen(), Fclose()

Fdatime() - 2.75

T H E A T A R I C O M P E N D I U M

Fdatime()
LONG Fdatime(timeptr, handle, flag)
DATETIME * timeptr;
WORD handle, flag;

Fdatime() reads or modifies a file’s time and date stamp.

OPCODE 87 (0x57)

AVAILABILITY All GEMDOS versions.

PARAMETERS timeptr is a pointer to a DATETIME structure which is represented below.
handle is a valid GEMDOS file handle to the file to modify. flag is
FD_INQUIRE (0) to fill timeptr with the file’s date/timestamp and FD_SET (1)
to change the file’s date/timestamp to the contents of timeptr.

typedef struct
{

unsigned hour:5;
unsigned minute:6;
unsigned second:5;
unsigned year:7;
unsigned month:4;
unsigned day:5;

} DATETIME;

BINDING move.w flag,-(sp)
move.w handle,-(sp)
pea timeptr
move.w #$57,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fdatime() returns a 0 if the date/time was successfully read/modified. Otherwise,
it returns a negative GEMDOS error code.

CAVEATS GEMDOS versions below 0.15 yielded very unpredictable results with this call
and should therefore be avoided.

COMMENTS timeptr.second should be multiplied times two to obtain the actual value.
timeptr.year is expressed as an offset from 1980.

2.76 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fdelete()
LONG Fdelete(fname)
char *fname;

Fdelete() deletes the specified file.

OPCODE 65 (0x41)

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is the GEMDOS file specification of the file to be deleted.

BINDING pea fname
move.w #$41,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fdelete() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code if it fails.

CAVEATS Do not attempt to delete a file that is currently open or unpredictable results will
occur.

COMMENTS Ddelete() must be used to delete subdirectories.

SEE ALSO Ddelete()

Fdup()
LONG Fdup(shandle)
WORD shandle;

Fdup() duplicates a standard file handle (0-5) and assigns it a new handle (>6).

OPCODE 69 (0x45)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandle is the standard GEMDOS handle to be duplicated.

BINDING move.w shandle,-(sp)
move.w #$45,-(sp)
trap #1

Fforce() - 2.77

T H E A T A R I C O M P E N D I U M

addq.l #4,sp

RETURN VALUE Fdup() returns a normal GEMDOS file handle in the lower WORD of the
returned LONG . If the LONG return value is negative then it should be treated as
a GEMDOS error code.

COMMENTS This function is generally used to save a standard file handle so that an Fforce()
operation may be undone.

SEE ALSO Fforce()

Fforce()
LONG Fforce(shandle, nhandle)
WORD shandle, nhandle;

Fforce() is used to redirect the standard input or output from a GEMDOS
standard handle to a specific handle created by the application.

OPCODE 70 (0x46)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandle is a standard GEMDOS handle to be redirected. nhandle is the new
handle you wish to direct it to. Valid values for shandle and nhandle are as
follows:

Name Handle
GEMDOS
Filename Meaning

GSH_CONIN 0 con: Standard input (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_CONOUT 1 con: Standard output (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_AUX 2 aux: Currently mapped serial device (defaults
to whichever BIOS device is mapped to
GEMDOS handle -2)

GSH_PRN 3 prn: Printer port (defaults to whichever BIOS
device is currently mapped to GEMDOS
handle -3).

— 4 None Reserved

— 5 None Reserved

GSH_BIOSCON -1 None Refers to BIOS handle 2. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

2.78 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

GSH_BIOSAUX -2 None Refers to BIOS handle 1. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_BIOSPRN -3 None Refers to BIOS handle 0. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_MIDIIN
GSH_MIDIOUT

-4
-5

None GEMDOS handles -4 and -5 refer to
MIDI input and output respectively.
Redirecting these handles will affect
BIOS handle 3. These special handles
exist only with the presence of MiNT.

BINDING move.w nhandle,-(sp)
move.w shandle,-(sp)
move.w #$46,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fforce() returns E_OK (0) if no error occurred or EIHNDL (-37) if a bad handle
is given.

CAVEATS Prior to GEMDOS versions 0.15, handles forced to the printer would not work
properly.

COMMENTS This function is often used to redirect the input or output of a child process. It
should be used in conjunction with Fdup() to restore the standard handle before
process termination. In addition, you should be aware that any file handle
redirected to a standard handle (‘con:’ for example) will be closed when the child
exits and should not be closed by the parent.

Standard GEMDOS file handles which have been redirected will revert to their
original mapping upon Fclose().

SEE ALSO Fdup()

Fgetchar()
LONG Fgetchar(handle, mode)
WORD handle, mode;

Fgetchar() reads a character from the specified handle.

OPCODE 263 (0x107)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

Fgetdta() - 2.79

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid GEMDOS handle to read from. If handle is a TTY then mode (a
bit mask) has meaning as follows:

Name mode Meaning

TTY_COOKED 0x01 Cooked mode. Special control characters such as CTRL-C
and CTRL-Z are checked and acted upon. In addition, flow
control with CTRL-S and CTRL-Q is activated.

TTY_ECHO 0x02 Echo mode. Characters read are echoed back to the TTY.

BINDING move.w mode,-(sp)
move.w handle,-(sp)
move.w #$107,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fgetchar() returns the character read in the low byte of the returned LONG . If the
device is a terminal where scan codes are available, the LONG will be mapped
in the same manner as Bconin(). If an end-of-file is reached, the value 0xFF1A
will be returned.

SEE ALSO Bconin(), Fputchar(), Fread()

Fgetdta()
DTA *Fgetdta(VOID)

Fgetdta() returns current DTA (Disk Transfer Address)

OPCODE 47 (0x2F)

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #$2F,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Fgetdta() returns a pointer to the current Disk Transfer Address. The structure
DTA is defined as:

typedef struct
{

BYTE d_reserved[21];
BYTE d_attrib;
UWORD d_time;

2.80 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

UWORD d_date;
LONG d_length;
char d_fname[14];

} DTA;

COMMENTS When an application starts, its DTA overlaps the command line string in the
processes’ basepage. Any use of the Fsfirst() or Fsnext() call without first
reallocating a new DTA will cause the processes’ command line to be corrupted.

To prevent this, you should use Fsetdta() to define a new DTA structure for your
process prior to using Fsfirst() or Fsnext(). Be careful to avoid assigning your
DTA to a local or automatic variable without setting it to its original value before
the variable goes out of scope.

SEE ALSO Fsetdta(), Fsfirst(), Fsnext()

Finstat()
LONG Finstat(handle)
WORD handle;

Finstat() determines the input status of a file.

OPCODE 261 (0x105)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file to return information about.

BINDING move.w handle,-(sp)
move.w #$105,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Finstat() returns 0 or a positive number of characters waiting to be read if
successful. A negative GEMDOS error code is returned otherwise.

CAVEATS Currently Finstat() always returns 0 for disk files.

SEE ALSO Cauxis(), Cconis(), Fcntl(), Foutstat()

Flink() - 2.81

T H E A T A R I C O M P E N D I U M

Flink()
LONG Flink(oldname, newname)
char *oldname, *newname;

Flink() creates a new name for the specified file. After the call the file may be
referred to by either name. An Fdelete() call on one filename will not affect the
other.

OPCODE 301 (0x12D)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS oldname points to the GEMDOS path specification of the currently existing file
and newname specifies the name of the alias to create.

BINDING pea newname
pea oldname
move.w #$12D,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Flink() returns a 0 if successful or a negative GEMDOS error code otherwise.

CAVEATS Not all file systems support ‘hard links’.

COMMENTS The filenames given must reside on the same physical device.

SEE ALSO Frename(), Fsymlink()

Flock()
LONG Flock(handle, mode, start, length)
WORD handle,mode;
LONG start,length;

Flock() sets or removes a lock on a portion of a file which prevents other
processes from accessing it.

OPCODE 92 ($5C)

AVAILABILITY Only present when ‘_FLK ’ cookie exists.

2.82 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies the GEMDOS handle of the file. mode is FLK_LOCK (0) to
create a lock and FLK_UNLOCK (1) to remove it. start specifies the byte offset
from the beginning of the file which indicates where the lock starts. length
specifies the length of the lock in bytes.

BINDING move.l length,-(sp)
move.l start,-(sp)
move.w mode,-(sp)
move.w handle,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Flock() returns E_OK (0) if the call was successful, ELOCKED (-58) if an
overlapping section of the file was already locked, ENSLOCK (-59) if a matching
lock was not found for removal, or another GEMDOS error code as appropriate.

COMMENTS To remove a lock, you must specify identical start and length parameters as you
originally set.

MiNT allows locks to be set on devices by locking their entry in ‘U:\DEV\’ as
shown in the example below:

handle = Fopen(“U:\DEV\MODEM1”, 3);
if(handle < 0)

return ERR_CODE; /* Unable to open. */

retcode = Flock((WORD)handle, 0, 0, 0); /* Lock
*/
if(retcode != E_OK)

return FILE_IN_USE; /* File is already locked */

/*
 * Now do device input/output.
 */

Flock((WORD)handle, 1, 0, 0); /* Unlock */
Fclose((WORD)handle);

SEE ALSO Fopen(), Fwrite(), Fread()

Fmidipipe()
LONG Fmidipipe(pid, in, out)
WORD pid, in, out;

Fmidipipe() is used to change the file handles used for MIDI input and output.

OPCODE 294 (0x126)

Fopen() - 2.83

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS pid is the process id of the process whose MIDI devices you wish to alter. If pid
is 0, then the current process will be modified. in specifies the GEMDOS file
handle of the device to handle MIDI input. out specifies the GEMDOS file handle
of the device to handle MIDI output.

BINDING move.w out,-(sp)
move.w in,-(sp)
move.w pid,-(sp)
move.w #$126,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fmidipipe() returns a 0 if successful or a negative GEMDOS error code
otherwise.

COMMENTS An Fmidipipe(0, in, out) call is essentially the same as:

Fforce(-4, in);
Fforce(-5, out);

After this call, any Bconin() calls to MIDI device 5 will translate to a one
character read from handle in. Likewise any Bconout() calls to MIDI device 5
will translate to a one character write to handle out.

SEE ALSO Fdup(), Fforce()

Fopen()
LONG Fopen(fname, mode)
char *fname;
WORD mode;

Fopen() opens the GEMDOS file specified.

OPCODE 61 ($3D)

AVAILABILITY All GEMDOS versions. mode bits pertaining to file sharing/record locking are
only valid when the ‘_FLK ’ cookie is present.

PARAMETERS fname is the GEMDOS file specification of the file to be opened. mode specifies
the mode the file is to be placed into once opened. mode is a bit array which may
be formed by using the bit masks given as follows:

2.84 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Bit 7 Bits 6-4 Bit 3 Bits 2-0

Inheritance flag Sharing
mode

Reserved Access code

Bits 0-2 specify the file access code as follows:

Bit 2 Bit 1 Bit 0 File Access Codes

0 0 0 Read only access (S_READ)

0 0 1 Write only access (S_WRITE)

0 1 0 Read/Write access (S_READWRITE)

Bit 3 is reserved and should always be 0. Bits 4-6 specify the file sharing mode of
the file to be opened as follows:

Bit 6 Bit 5 Bit 4 File Sharing Codes

0 0 0 Compatibility Mode (S_COMPAT).

If the file’s read-only bit is set, then this
is the same as Deny Writes, otherwise
it is the same as Deny Read/Writes.

0 0 1 Deny Read/Writes
(S_DENYREADWRITE)

0 1 0 Deny Writes (S_DENYWRITE)

0 1 1 Deny Reads (S_DENYREAD)

1 0 0 Deny None (S_DENYNONE)

Bit 7 (S_INHERIT) is the file’s inheritance flag. If this flag is not set, a child
process will inherit any open file handles and has the same access as the parent. If
this flag is set, a child must re-open any files it wishes to use and must face the
same sharing restrictions other processes must share.

BINDING move.w mode,-(sp)
pea fname
move.w #$3D,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Upon return, if the longword is positive, the lower WORD contains the new
handle of the open file, otherwise the negative LONG should be regarded as a
GEMDOS error code.

COMMENTS Bits 7-3 of mode should be set to 0 unless the ‘_FLK ’ cookie is present indicating
the presence of the file sharing/record locking extensions to GEMDOS.

SEE ALSO Fclose(), Fcreate()

Foutstat() - 2.85

T H E A T A R I C O M P E N D I U M

Foutstat()
LONG Foutstat(handle)
WORD handle;

Foutstat() determines the output status of a file.

OPCODE 262 (0x106)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file to return information about.

BINDING move.w handle,-(sp)
move.w #$106,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Foutstat() returns a 0 or positive number indicating the number of characters
which may be written to the specified file without blocking. If an error occurred,
Foutstat() returns a negative GEMDOS error code.

CAVEATS Currently this function always returns 1 for disk files.

SEE ALSO Cconos(), Cauxos(), Cprnos(), Fcntl(), Finstat()

Fpipe()
LONG Fpipe(fhandle)
WORD fhandle[2];

Fpipe() creates a pipe named ‘SYS$PIPE.xxx’ (where ‘xxx’ is a three digit
integer) on ‘U:\PIPE\’ and returns two file handles to it, one for reading and one
for writing.

OPCODE 256 (0x100)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS fhandle is a pointer to an array of two WORDs. If the functions is successful,
fhandle[0] will contain an open GEMDOS file handle to the pipe which may be
used for reading only. fhandle[1] will contain an open GEMDOS file handle to
the pipe which may be used for writing only.

2.86 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING pea fhandle
move.w #$100,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fpipe() returns E_OK (0) if successful or a negative GEMDOS error code
otherwise.

CAVEATS No more than 999 pipes created with Fpipe() may be in use at once.

COMMENTS This function is normally used by shells who wish to redirect the input and output
of their child processes. Prior to lauching a child process, the shell redirects its
input and output (as necessary) to the read and write ends of the newly created
pipe.

Fputchar()
LONG Fputchar(handle, lchar, mode)
WORD handle;
LONG lchar;
WORD mode;

Fputchar() writes a character to the specified file.

OPCODE 264 (0x108)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the handle of the file to write a character to.

If the file specified by handle is a pseudo-terminal then all four bytes of lchar are
written (it should be formatted as a character read from Bconin()), otherwise only
the low byte of lchar is transmitted.

mode is only valid if handle refers to a terminal device. If mode is
TTY_COOKED (0x0001) then control characters (which could cause SIGINT or
SIGTSTP signals to be raised) passed through this function will be interpreted
and acted upon. Setting mode to 0 will cause control characters to have no special
effect.

BINDING move.w mode,-(sp)
move.l lchar,-(sp)
move.w handle,-(sp)
move.w #$108,-(sp)
trap #1

Fread() - 2.87

T H E A T A R I C O M P E N D I U M

lea 10(sp),sp

RETURN VALUE Fputchar() returns 4L if the character was output to a terminal, 1L if the character
was output to a non-terminal, 0L if the character could not be written (possibly
because of flow control), EIHNDL (-37) if the handle was invalid, or a negative
BIOS error code if an error occurred during I/O.

SEE ALSO Cconout(), Cauxout(), Crawio(), Cprnout(), Bconout(), Fgetchar(), Fwrite()

Fread()
LONG Fread(handle, length, buf)
WORD handle;
LONG length;
VOIDP buf;

Fread() reads binary data from a specified file from the current file pointer.

OPCODE 63 (0x3F)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is the GEMDOS file handle of the file to read from. length specifies the
number of bytes of data to read. buf is a pointer to a buffer (at least length bytes
long) where the read data will be stored.

BINDING pea buf
move.l length,-(sp)
move.w handle,-(sp)
move.w #$3F,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Fread() returns either a positive amount indicating the number of bytes actually
read (this number may be smaller than length if an EOF is hit) or a negative
GEMDOS error code.

CAVEATS Fread() will crash the system if given a parameter of 0 for length on GEMDOS
versions lower than 0.15.

SEE ALSO Fwrite(), Fopen(), Fclose()

2.88 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Freadlink()
LONG Freadlink(bufsiz, buf, name)
WORD bufsiz;
char *buf, *name;

Freadlink() determines what file the specified symbolic link refers to.

OPCODE 303 (0x12F)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS bufsiz specifies the length of buffer buf into which the original file pointed to by
the symbolic link name is written.

BINDING pea name
pea buf
move.w bufsiz,-(sp)
move.w #$12F,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Freadlink() returns 0 if successful or a negative GEMDOS error code otherwise.

SEE ALSO Fsymlink()

Frename()
LONG Frename(reserved, oldname, newname)
WORD reserved;
char *oldname,*newname;

Frename() renames a standard GEMDOS file. It may also be used to move a file
in the tree structure of a physical drive.

OPCODE 86 (0x56)

AVAILABILITY All GEMDOS versions.

PARAMETERS reserved is not currently used and should be 0. oldname is the GEMDOS file
specification of the file’s current name/location. newname is the GEMDOS file
specification of the new name/location of the file.

BINDING pea newname

Fseek() - 2.89

T H E A T A R I C O M P E N D I U M

pea oldname
move.w #0,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Frename() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code if not.

CAVEATS Prior to GEMDOS version 0.15, this command may not be used to rename
folders. Also, do not attempt to rename a file that is currently open under any
version of GEMDOS.

Fseek()
LONG Fseek(offset, handle, mode)
LONG offset;
WORD handle,mode;

Fseek() moves the file position pointer within a GEMDOS file.

OPCODE 66 (0x42)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle specifies the GEMDOS file handle of the file pointer to modify. The
meaning of offset varies with mode as follows:

Name mode Meaning

SEEK_SET 0 offset specifies the positive number of bytes from the
beginning of the file.

SEEK_CUR 1 offset specifies the negative or positive number of bytes from
the current file position.

SEEK_END 2 offset specifies the positive number of bytes from the end of
the file.

BINDING move.w mode,-(sp)
move.w handle,-(sp)
move.l offset,-(sp)
move.w #$42,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fseek() returns a positive value representing the new absolute location of the file
pointer from the beginning of the file or a negative GEMDOS error code.

2.90 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fselect()
WORD Fselect(timeout, rfds, wfds, reserved)
WORD timeout;
LONG * rfds, *wfds;
LONG reserved;

Fselect() enumerates file descriptors which are ready for reading and/or writing.

OPCODE 285 (0x11D)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS timeout specifies the maximum amount of time (in milliseconds) to wait for at
least one of the specified file descriptors to become unblocked. If timeout is 0
then the process will wait indefinitely.

rfds and wfds each point to a LONG bitmap describing the read and write file
descriptors to wait for. Setting bit #10 of the LONG pointed to by rfds, for
example, will cause Fselect() to return when GEMDOS handle 10 is available
for reading.

As many read or write file descriptors can be specified per call as desired.
Specifying NULL for either rfds or wfds is the same as passing a pointer to a
LONG with no bits set.

Upon return the LONGs pointed to by rfds and wfds will be filled in with a
similar bitmap indicating which handles are ready to be read/written. reserved
should always be set to 0L.

BINDING move.l reserved,-(sp)
pea wfds
pea rfds
move.w timeout,-(sp)
move.w #$11D,-(sp)
trap #1
lea 16(sp),sp

RETURN VALUE Fselect() returns the sum of bits set in both rfds and wfds. A return value of 0
indicates that the function timed out before any of the specified file handles
became available. A negative GEMDOS error code is returned if the function
failed.

CAVEATS Fselect() does not currently work on any BIOS device except the keyboard.

COMMENTS Fselect(0L, 0L, 0L, 0L) will block the calling process forever.

Fsetdta() - 2.91

T H E A T A R I C O M P E N D I U M

SEE ALSO Finstat(), Foutstat()

Fsetdta()
VOID Fsetdta(ndta)
DTA * ndta;

Fsetdta() sets the location of a new DTA (Disk Transfer Address) in memory.

OPCODE 26 (0x1A)

AVAILABILITY All GEMDOS versions.

PARAMETERS ndta is a pointer to a valid memory area which will be used as the new DTA . The
DTA structure is defined under the entry for Fgetdta().

BINDING pea ndta
move.w #$1A,-(sp)
trap #1
addq.l #6,sp

COMMENTS When an application starts, its DTA overlaps the command line string in the
processes’ basepage. Any use of the Fsfirst() or Fsnext() call without first
reallocating a new DTA will cause the processes’ command line to be corrupted.

To prevent this, you should use Fsetdta() to define a new DTA structure for your
process prior to using Fsfirst() or Fsnext(). Be careful to avoid assigning your
DTA to a local or automatic variable without setting it to its original value before
the variable goes out of scope.

SEE ALSO Fgetdta(), Fsfirst(), Fsnext()

Fsfirst()
WORD Fsfirst(fspec, attribs)
char *fspec;
WORD attribs;

Fsfirst() searches the file/pathspec given for the first occurrence of a file or
subdirectory with named attributes and if found, fill in the current DTA with that
file’s information.

2.92 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 78 (0x4E)

AVAILABILITY All GEMDOS versions.

PARAMETERS fspec is the GEMDOS file specification of the file or subdirectory to search for.
This specification may use wildcard characters (? or *) within the filename,
however they may not be used within the pathname. This function is the only
GEMDOS function which accepts wildcard characters in the path specification.

attribs is a bit mask which can combine several file characteristics that further
narrows the search as follows:

Name Bit Mask Meaning

FA_READONLY 0x01 Include files which are read-only.

FA_HIDDEN 0x02 Include hidden files.

FA_SYSTEM 0x04 Include system files.

FA_VOLUME 0x08 Include volume labels.

FA_DIR 0x10 Include subdirectories.

FA_ARCHIVE 0x20 Include files with archive bit set.

BINDING move.w attribs,-(sp)
pea fspec
move.w #$4E,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fsfirst() returns E_OK (0) if a file was found and the DTA was successfully
filled in with the file information. Otherwise, it returns a negative GEMDOS
error code.

The DTA structure is defined as:

typedef struct
{

BYTE d_reserved[21];
BYTE d_attrib;
UWORD d_time;
UWORD d_date;
LONG d_length;
char d_fname[14];

} DTA;

COMMENTS This function uses the application’s DTA which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a new DTA will corrupt the command line.

When running in the MiNT domain (see Pdomain()), Fsfirst() and Fsnext() will
fill in the DTA with lowercase filenames rather than the standard TOS uppercase.

Fsnext() - 2.93

T H E A T A R I C O M P E N D I U M

SEE ALSO Fsnext(), Fgetdta(), Fsetdta()

Fsnext()
WORD Fsnext(VOID)

Fsnext() should be called as many times as necessary after a corresponding
Fsfirst() call to reveal all files which match the search criteria.

OPCODE 79 (0x4F)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$4F,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Fsnext() returns E_OK (0) if another file matching the search criteria given in
Fsfirst() is found and the DTA has been properly filled in with the file’s
information. Otherwise, a negative GEMDOS error code is returned.

COMMENTS This function uses the application’s DTA which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a new DTA will corrupt the command line.

This call should only be used after Fsfirst() and the contents of the DTA should
not be modifed between the calls.

SEE ALSO Fsfirst()

Fsymlink()
LONG Fsymlink(oldname, newname)
char *oldname, *newname;

Fsymlink() creates a symbolic link to a file.

OPCODE 302 (0x12E)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS oldname points to the file specification of the file to create a link to. newname

2.94 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

points to the file specification of the link to create.

BINDING pea newname
pea oldname
move.w #$12E,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fsymlink() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Fsymlink(), unlike Flink() , creates symbolic links, which, unlike hard links, can
be setup between physical devices and file systems.

An Fdelete() call to a symbolic link will delete the link, not the file. A call to
Fdelete() on the original file will cause future references to the created symbolic
link to fail.

SEE ALSO Flink(), Freadlink()

Fwrite()
LONG Fwrite(handle, count, buf)
WORD handle;
LONG count;
VOIDP buf;

Fwrite() writes the contents of a buffer to the specified GEMDOS file.

OPCODE 64 (0x40)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is the handle of the file to write to. count specifies the number of bytes to
write. buf indicates the starting address of the data to write.

BINDING pea buf
move.l count,-(sp)
move.w handle,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fwrite() returns the positive number of bytes actually written or a negative
GEMDOS error code if the operation failed.

CAVEATS Prior to GEMDOS version 0.15, calling Fwrite() with a count parameter of 0
will hang the system.

Fxattr() - 2.95

T H E A T A R I C O M P E N D I U M

SEE ALSO Fread()

Fxattr()
LONG Fxattr(flag, name, xattr)
WORD flag;
char *name;
XATTR * xattr;

Fxattr() returns extended information about the specified file.

OPCODE 300 (0x12C)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS flag specifies whether attributes returned by this call on symbolic links should be
those of the file to which the link points or the link itself. A value of FX_FILE (0)
causes the attributes to be those of the actual file whereas a value of FX_LINK (1)
returns the attributes of the link itself.

name specifies the name of the file from which attributes are to be read and placed
in the XATTR structure pointed to by xattr. XATTR is defined as follows:

typedef struct
{

UWORD mode;
LONG index;
UWORD dev;
UWORD reserved1;
UWORD nlink;
UWORD uid;
UWORD gid;
LONG size;
LONG blksize;
LONG nblocks;
WORD mtime;
WORD mdate;
WORD atime;
WORD adate;
WORD ctime;
WORD cdate;
WORD attr;
WORD reserved2;
LONG reserved3;
LONG reserved4;

} XATTR;

XATTR ’s members have the following meaning:

2.96 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

XATTR
Element Meaning

mode Masking mode with 0xF000 reveals the file type as one of the following:

S_IFCHR (0x2000)
S_IFDIR (0x4000)
S_IFREG (0x8000)
S_IFIFO (0xA000)
S_IMEM (0xC000)
S_IFLNK (0xE000)

The lower three nibbles of mode is a bit mask which specifies the legal file
access mode(s) as defined in Fchmod() .

index This member combined with the dev field are designed to provide a unique
identifier for a file under file systems which allow multiple files with the same
filename.

dev This value represents either a BIOS device number or an identifier created
by the file system to represent a remote device.

reserved1 This structure element is currently reserved for future implementations of
MiNT.

nlink This value specifies the current number of hard links attached to the file. On a
file system that does not support hard links and for most regular files, nlink is
1.

uid uid is the user ID of the owner of the file.

gid gid is the group ID of the owner of the file.

size size is the length of the file in bytes.

blksize blksize specifies the size of blocks (in bytes) in this file system.

nblocks nblocks is the actual number of blocks the file is using on the device. This
number may include data storage elements other used to keep track of the
file (aside from the actual data).

mtime, mdate Time and date of the last file modification in GEMDOS format.

atime, adate Time and date of the last file access in GEMDOS format.

ctime, cdate Time and date of the file’s creation in GEMDOS format.

attr Standard file attributes (same as read by Fattrib()).

reserved2 This structure element is currently reserved for future implementations of
MiNT.

reserved3 This structure element is currently reserved for future implementations of
MiNT.

reserved4 This structure element is currently reserved for future implementations of
MiNT.

BINDING pea xattr
pea name
move.w flag,-(sp)
move.w #$12C,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Fxattr() returns 0 if successful or a negative GEMDOS error code otherwise.

SEE ALSO Fattrib()

Maddalt() - 2.97

T H E A T A R I C O M P E N D I U M

Maddalt()
LONG Maddalt(start, size)
VOIDP start;
LONG size;

Maddalt() informs GEMDOS of the existence of additional ‘alternative’ RAM
that would not normally have been identified by the system.

OPCODE 20 (0x14)

AVAILABILITY Available as of GEMDOS version 0.19 only.

PARAMETERS start indicates the starting address for the block of memory to be added to the
GEMDOS free list. size indicates the length of this block in bytes.

BINDING move.l size,-(sp)
pea start
move.w #$14,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Maddalt() returns E_OK (0) if the call succeeds or a negative GEMDOS error
code otherwise.

COMMENTS This call should only be used to identify RAM not normally identified by the
BIOS at startup (added through a VME-card or hardware modification). Once this
RAM has been identified to the system it may not be removed and should only be
allocated and used via the standard system calls. In addition, programs wishing to
use this RAM must have their alternative RAM load bit set or use Mxalloc() to
specifically request alternative RAM.

See the discussion earlier in this chapter for more information about the types of
available RAM.

SEE ALSO Mxalloc()

2.98 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Malloc()
VOIDP Malloc(amount)
LONG amount;

Malloc() requests a block of memory for use by an application.

OPCODE 72 (0x48)

AVAILABILITY All GEMDOS versions.

PARAMETERS amount specifies the amount of memory (in bytes) you wish to allocate. You may
pass a value of -1L in which case the function will return the size of the largest
free block of memory.

BINDING move.l amount,-(sp)
move.w #$48,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Malloc() returns NULL if there is no block large enough to fill the request or a
pointer to the block if the request was satisfied. The memory allocated will be
chosen based on the status of the processes’ load flags. To specify the memory
requirements in more detail, use Mxalloc().

CAVEATS Prior to GEMDOS version 0.15, Malloc(0L) will return a pointer to invalid
memory as opposed to failing as it should.

COMMENTS Because GEMDOS can only allocate a limited amount of blocks per process (as
few as 20 depending on the version of GEMDOS), applications should limit their
usage of this call by allocating a few large blocks instead of many small blocks or
use a ‘C’ memory manager (like malloc()) if possible.

SEE ALSO Mxalloc()

Mfree()
WORD Mfree(startadr)
VOIDP startadr;

Mfree() releases a block of memory previously reserved with Malloc() or
Mxalloc() back into the GEMDOS free list.

OPCODE 73 (0x49)

Mshrink() - 2.99

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS startadr is the starting address of the block to be freed. This address must be the
same as that returned by the corresponding Malloc() or Mxalloc() call.

BINDING pea startadr
move.w #$49,-(sp)
trap #1
addq. #6,sp

RETURN VALUE Mfree() returns E_OK (0) if the block was freed successfully or a negative
GEMDOS error code otherwise.

SEE ALSO Malloc(), Mxalloc()

Mshrink()
WORD Mshrink(startadr, newsize)
VOIDP startadr;
LONG newsize;

Mshrink() releases a portion of a block’s memory to the GEMDOS free list.

OPCODE 74 (0x4A)

AVAILABILITY All GEMDOS versions.

PARAMETERS startadr is the address of the block whose size you wish to decrease. newsize is
the length you now desire for the block.

BINDING move.l newsize,-(sp)
pea startadr
clr.w -(sp) // Required/Reserved Value
move.w #$4A,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Mshrink() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code otherwise.

CAVEATS This call should be used only to ‘shrink’ a memory block, not to enlarge it.

SEE ALSO Malloc(), Mxalloc(), Mfree()

2.100 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Mxalloc()
VOIDP Mxalloc(amount, mode)
LONG amount;
WORD mode;

Mxalloc() allocates a block of memory according to specified preferences.

OPCODE 68 (0x44)

AVAILABILITY Available from GEMDOS version 0.19.

PARAMETERS amount specifies the length (in bytes) of the block requested. As with Malloc(),
specifying -1L for amount will return the size of the largest block of memory
available. With modes 0 or 1, the size of the largest block of available RAM from
the specified type of RAM is returned. Modes 2 and 3 return the size of the largest
available block or whichever type of RAM had the largest block.

mode is a WORD bit array which specifies the type of memory requested as
follows:

Bit Meaning

0-1 Bits 0-1 represent a possible value of 0-3 representing the type of RAM to
allocate as follows:

Name Value Meaning
MX_STRAM 0 Allocate only ST-RAM
MX_TTRAM 1 Allocate only TT-RAM
MX_PREFSTRAM 2 Allocate either, preferring ST-RAM
MX_PREFTTRAM 3 Allocate either, preferring TT-RAM

2 Not used (should be set to 0).

3 If set, refer to bits 4-7 for memory protection advice, otherwise default to
protection specified in program header. This bit is only valid in the presence
of MiNT.

4-7 Bits 4-7 represent a possible value of 0-7 representing the memory
protection mode to place on the allocated block of memory. Currently valid
values are:

Name Value Meaning
MX_HEADER 0 Refer to Program Header
MX_PRIVATE 1 Private
MX_GLOBAL 2 Global
MX_SUPERVISOR 3 Supervisor Mode Only Access
MX_READABLE 4 Read Only Access

These bits are only consulted if bit 3 is set and MiNT is present.
8-15 Not used (should be set to 0).

Pause() - 2.101

T H E A T A R I C O M P E N D I U M

BINDING move.w mode,-(sp)
move.l amount,-(sp)
move.w #$44,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Mxalloc() returns NULL if the request could not be granted or a valid pointer to
the start of the block allocated otherwise.

COMMENTS Mxalloc() should be used instead of Malloc() whenever it is available.

SEE ALSO Malloc(), Mfree()

Pause()
VOID Pause(VOID)

Pause() suspends the process until a signal is received.

OPCODE 289 (0x121)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$121,-(sp)
trap #1
addq.l #2,sp

COMMENTS If the signal handler does a ‘C’ longjmp() to a different point in the process or if
the handler’s purpose is to exit the process, this call will never return.

SEE ALSO Psigblock(), Psignal(), Psigsetmask()

Pdomain()
WORD Pdomain(domain)
WORD domain;

Pdomain() determines/modifies the calling processes’ execution domain.

OPCODE 281 (0x119)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS domain contains the domain code of the new process domain. Currently the only

2.102 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

valid values are DOMAIN_TOS (0) for the TOS compatibility domain and
DOMAIN_MINT (1) for the MiNT domain. Passing a negative value for domain
will not change domains but it will return the current domain.

BINDING move.w domain,-(sp)
move.w #$119,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pdomain() returns the domain in effect prior to the call.

COMMENTS Process domain affects system calls like Fread(), Fwrite() , Fsfirst(), and
Fsnext(). Processes behave as expected when under the TOS domain.

When processes run under the MiNT domain, however, the behavior of Fread()
and Fwrite() calls when dealing with terminals can be modified by Fcntl(). Also,
Fsfirst() and Fsnext() may not necessarily return the standard DOS 8 + 3 file
name format. MiNT domain processes must understand filenames formatted for
different file systems.

SEE ALSO Fcntl()

Pexec()
LONG Pexec(mode, fname, cmdline, envstr)
WORD mode;
char *fname,*cmdline,*envstr;

Pexec() has many functions designed to spawn child processes depending on the
selected mode.

OPCODE 75 (0x4B)

AVAILABILITY Pexec() modes 0, 3, 4, and 5, are available in all GEMDOS versions. Mode 6 is
available as of GEMDOS version 0.15. Mode 6 is available as of GEMDOS
version 0.19. Modes 100, 104, 106, and 200 are only available in the presence of
MiNT .

PARAMETERS mode defines the function of Pexec() and the meaning of its parameters and return
value as defined below. For modes which load a program, fname specifies the
GEMDOS file specification of the file to load. cmdline is pointer to a string
containg the command line which will be passed to the calling program. The first
byte of the string should indicate the length of the command line (maximum of 125
bytes). The actual command line starts at byte 2. envstr is a pointer to an
environment which is copied and assigned to the child process. If envstr is NULL ,

Pexec() - 2.103

T H E A T A R I C O M P E N D I U M

the child inherits a copy of the parent’s environment.

Name mode Meaning

PE_LOADGO 0 ‘LOAD AND GO’ - Load and execute named program file
and return a WORD exit code when the child terminates.

PE_LOAD 3 ‘LOAD, DON’T GO’ - Load named program. If successful,
the LONG return value is the starting address of the child
processes’ basepage. The parent owns the memory of the
child’s environment and basepage and must therefore free
them when completed with the child.

PE_GO 4 ‘JUST GO’ - Execute process with basepage at specified
address. With this mode, fname and envstr are NULL .
The starting address of the basepage of the process to
execute is given in the cmdline parameter.

PE_BASEPAGE 5 ‘CREATE BASEPAGE’ - This mode allocates the largest
block of free memory and creates a basepage in the first
256 bytes of it. fname should be set to NULL . It is the
responsibility of the parent to load or define the child’s
code, shrink the memory block as necessary, and initialize
the basepage pointers to the TEXT, DATA, and BSS
segments of the program.

With MiNT, use of this mode in conjunction with mode
PE_CGO can be used to emulate the Pvfork() call without
blocking the parent.

PE_GOTHENFREE 6 ‘JUST GO, THEN FREE’ - This mode is identical to mode
PE_GO except that memory ownership of the child’s
environment and basepage belong to the child rather than
the parent so that when the child Pterm() ’s, that memory is
automatically freed.

PE_CLOADGO 100 ‘LOAD, GO, DON’T WAIT’ - This mode is identical to
mode PE_LOADGO except that the parent process is
returned to immediately while the child continues to
execute. The positive process ID of the child is returned.
Environment and basepage memory blocks are freed
automatically when the child Pterm() ’s

PE_CGO 104 ‘JUST GO, DON’T WAIT’ - This mode is similar to mode
PE_GO except that the parent process is returned to
immediately while the child continues to execute
concurrently. The positive process ID of the child is
returned. Memory ownership of the environment and
basepage are shared by the parent and child (this sharing
extends to all memory owned by the parent).

fname may be used to supply a name for the child,
otherwise, if NULL is used, the name of the parent will be
used. cmdline should point to the process basepage.
envstr should be NULL .

PE_NOSHARE 106 ‘JUST GO, DON’T WAIT, NO SHARING’ - This mode is
exactly the same as mode PE_CGO except that the child
process owns its own environment and basepage sharing
no memory with the parent.

2.104 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PE_REPLACE 200 ‘REPLACE PROGRAM AND GO’ - This mode works like
mode PE_CLOADGO except that the parent process is
terminated immediately and the child process completely
replaces the parent in memory retaining the same process
ID. fname, cmdline, and envstr, are all normally passed
and valid.

BINDING pea envstr
pea cmdline
pea fname
move.w word,-(sp)
move.w #$4B,-(sp)
trap #1
lea 16(sp),sp

RETURN VALUE The value returned by Pexec() is dependent on the mode value and is therefore
explained above. All Pexec() modes return a LONG negative GEMDOS error
code when the call fails. A WORD negative value indicates the child was
successfully run but it terminated returning a negative error code. In all cases, a
process returning after having been interrupted with CTRL-C returns 0x0000FFE0
(-32).

COMMENTS Command lines longer than 126 bytes may be passed to processes aware of the
Atari Extended Command Line Specification (see discussion earlier in this
chapter).

SEE ALSO shel_write()

Pfork()
WORD Pfork(VOID)

Pfork() creates a copy of the current process.

OPCODE 283 (0x11B)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$11B,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pfork() returns the new process ID in the parent and a 0 in the child.

CAVEATS If the parent is in supervisor mode when this call is made, the child is started in
user mode anyway.

Pgetegid() - 2.105

T H E A T A R I C O M P E N D I U M

COMMENTS After a Pfork() call, two instances of one process will exist in memory. Program
execution in both processes continue at the same point in the TEXT segment
following this call. The parent’s DATA and BSS segments are physically copied
so that any variables that change in the child will not affect the parent and vice
versa.

New processes started with this call should not call Mshrink() but are required to
do any GEM initialization such as appl_init() and v_opnvwk() again (if GEM
usage is needed). Both the parent and child use Pterm() or Pterm0() to terminate
themselves.

SEE ALSO Pexec(), Pvfork()

Pgetegid()
WORD Pgetegid(VOID)

Pgetegid() returns the effective group ID of the process.

OPCODE 313 (0x139)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

BINDING move.w #$139,-(sp)
trap #1
addq.l #2,sp

COMMENTS The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

SEE ALSO Pgetgid(), Pgeteuid()

Pgeteuid()
WORD Pgeteuid(VOID)

Pgeteuid() returns the effective user ID of the process.

OPCODE 312 (0x138)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

BINDING move.w #$138,-(sp)
trap #1

2.106 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

addq.l #2,sp

COMMENTS The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

SEE ALSO Pgetuid(), Pgetegid()

Pgetgid()
WORD Pgetgid(VOID)

Pgetgid() returns the group ID (0-255) of the calling process.

OPCODE 271 (0x10F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10F,-(sp)
trap #1
addq.l #2,sp

SEE ALSO Psetgid()

Pgetpgrp()
WORD Pgetpgrp(VOID)

Pgetpgrp() returns the process group ID code for the calling process.

OPCODE 269 (0x10D)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10D,-(sp)
trap #1
addq.l #2

COMMENTS Process groups are closely related processes which are used for job control and
signaling purposes. Process groups usually terminate together rather than one at a
time.

SEE ALSO Psetpgrp(), Pkill()

Pgetpid() - 2.107

T H E A T A R I C O M P E N D I U M

Pgetpid()
WORD Pgetpid(VOID)

Pgetpid() returns the positive WORD process ID code for the calling process.
This identifer uniquely identifies the process within the system.

OPCODE 267 (0x10B)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10B,-(sp)
trap #1
addq.l #2,sp

Pgetppid()
WORD Pgetppid(VOID)

Pgetppid() returns the process ID for the calling processes’ parent.

OPCODE 268 (0x10C)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10C,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pgetppid() returns the process ID code for the parent of the calling process or 0 if
it was started by the kernel (not a child process).

Pgetuid()
WORD Pgetuid(VOID)

Pgetuid() returns the user ID code (0-255) of the calling process which
determines access permissions and can be used in a multi-user system to
differentiate users.

OPCODE 271 (0x10F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

2.108 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING move.w #$10F,-(sp)
trap #1
addq.l #2

SEE ALSO Psetuid()

Pkill()
WORD Pkill(pid, sig)
WORD pid, sig;

Pkill() sends a signal to one or more processes.

OPCODE 273 (0x111)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS Pkill() sends signal sig to certain processes based on the value of pid. If pid is
positive, the signal is sent the the process with process identifier pid. If pid is 0,
the signal is sent to all processes who belong to the same process group as the
caller as well as the caller itself. If pid is negative, the signal is sent to all
processes with process group number -pid.

BINDING move.w sig,-(sp)
move.w pid,-(sp)
move.w #$111,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Pkill() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS If the caller is also a recipient of a signal and that signal causes program
termination this call will never return.

SEE ALSO Psignal()

Pmsg() - 2.109

T H E A T A R I C O M P E N D I U M

Pmsg()
WORD Pmsg(mode, mboxid, msgptr)
WORD mode;
LONG mboxid;
PMSG *msgptr;

Pmsg() sends/receives a message to/from a ‘message box’.

OPCODE 293 (0x125)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS mode specifies the action to take as follows:

Name mode Operation

MSG_READ 0 Block the process and don’t return until a
message is read from the specified mailbox
ID mboxid and placed in the structure
pointed to by msgptr.

MSG_WRITE 1 Block the process and don’t return until a
process waiting for a message with mailbox
ID mboxid has received the message
contained in the structure pointed to by
msgptr.

MSG_READWRITE 2 Block the process until a process waiting for
a message with mailbox ID mboxid has
received the message contained in the
structure pointed to by msgptr and a return
message is received with mailbox ID
0xFFFFxxxx where ‘xxxx’ is the process ID
of the current process.

PMSG is defined as:

typedef struct
{

LONG userlong1;
LONG userlong2;
WORD pid;

} PMSG;

On return from writes, pmsg.pid contains the process ID of the process who read
your message, on return from reads, its the process ID of the writer. The contents
of userlong1 and userlong2 is completely up to the sender.

By OR’ing mode with MSG_NOWAIT (0x8000), you can prevent the call from
blocking the process and simply return -1 if another process wasn’t waiting to

2.110 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

read or send your process a message.

BINDING pea msgptr
move.l mboxid,-(sp)
move.w mode,-(sp)
move.w #$125,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Pmsg() returns 0 if successful, -1 if bit 0x8000 is set and no process was ready to
receive/send the desired message, or a negative GEMDOS error code.

Pnice()
WORD Pnice(delta)
WORD delta;

Pnice() alters the process priority of the calling process.

OPCODE 266 (0x10A)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS delta is a signed number which is added to the current process priority value.
Positive values decrease process priority while negative values increase it.

BINDING move.w delta,-(sp)
move.w #$10A,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pnice() returns the prior process priority.

COMMENTS The process priority value has no fixed formula so it is hard to be able to predict
the results of this call with any accuracy. This call is the same as
Prenice(Pgetpid(), delta).

SEE ALSO Prenice()

Prenice() - 2.111

T H E A T A R I C O M P E N D I U M

Prenice()
LONG Prenice(pid, delta)
WORD pid, delta;

Prenice() adjusts the process priority of the specified process.

OPCODE 295 (0x127)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS The process priority for the process with process ID pid is adjusted by signed
value delta. Positive values for delta decrease process priority while negative
values increase it.

BINDING move.w delta,-(sp)
move.w pid,-(sp)
move.w #$127,-(sp)
trap #1
addq.l #6

RETURN VALUE Prenice() returns a 32-bit negative GEMDOS error code if unsuccessful.
Otherwise, the lower 16-bit signed value can be interpreted as the previous
process priority code.

COMMENTS The exact effect adjusting process priorites will have is difficult to determine.

SEE ALSO Pnice()

Prusage()
VOID Prusage(rusg)
LONG * rusg;

Prusage() returns resource information about the current process.

OPCODE 286 (0x11E)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS rusg is a pointer to an array of 8 LONGs as follows:

2.112 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Name rusg[x] Meaning

PRU_KERNELTIME 0 Time spent by process in MiNT kernel.

PRU_PROCESSTIME 1 Time spent by process in its own
code.

PRU_CHILDKERNALTIME 2 Total MiNT kernel time spent by
children of this process.

PRU_CHILDPROCESSTIME 3 Total user code time spent by children
of this process.

PRU_MEMORY 4 Total memory allocated by process (in
bytes).

— 5-7 Reserved for future use.

BINDING pea rusg
move.w #$11E,-(sp)
trap #1
addq.l #6,sp

COMMENTS All times given are in milliseconds.

SEE ALSO Psetlimit()

Psemaphore()
LONG Psemaphore(mode, id, timeout)
WORD mode;
LONG id;
LONG timeout;

Psemaphore() creates a semaphore which may only be accessed by one process at
a time.

OPCODE 308 (0x134)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.92 exists.

PARAMETERS mode specifies the mode of the operation which affects the other two parameters
as follows:

Name mode Meaning

SEM_CREATE 0 Create a semaphore with called id and grant ownership
to the calling process. timeout is ignored.

SEM_DESTROY 1 Destroy the semaphore called id. This only succeeds if
the semaphore is owned by the caller. timeout is
ignored.

Psetgid() - 2.113

T H E A T A R I C O M P E N D I U M

SEM_LOCK 2 Request ownership of semaphore id. The process will
wait for the semaphore to become available for timeout
milliseconds and then return. If timeout value of 0 will
force the call to return immediately whether or not the
semaphore is available. A timeout value of -1 will cause
the call to wait indefinitely.

SEM_UNLOCK 3 Release ownership of semaphore id. The caller must be
the current owner of the semaphore to release control.
timeout is ignore.

BINDING move.l timeout,-(sp)
move.l id,-(sp)
move.w mode,-(sp)
move.w #$134,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Psemaphore() returns a 0 if successful, ERROR (-1) if the process requested a
semaphore it already owned, or a negative GEMDOS error code.

COMMENTS If your process is waiting for ownership of a semaphore and it is destroyed by
another process, an ERANGE (-64) error will result. Any semaphores owned by
a process when it terminates are released but not deleted.

Psetgid()
WORD Psetgid(gid)
WORD gid;

Psetgid() sets the group ID of the calling process.

OPCODE 277 (0x115)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS gid is the group ID code to assign the calling process (0-255).

BINDING move.w gid,-(sp)
move.w #$115,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Psetgid() returns gid if successful or EACCDN (-36) if the process did not have
the authority to change the group ID.

COMMENTS The group ID of a process may only be changed when it is currently 0. Therefore,
once the group ID has been set, it is fixed and unchangeable. Further attempts to
modify it will result in an EACCDN error.

2.114 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Pgetgid()

Psetlimit()
LONG Psetlimit(limit , value)
WORD limit ;
LONG value;

Psetlimit() reads/modifies resource allocation limits for the calling process and
all of its children.

OPCODE 287 (0x11F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS limit defines the resource to read or modify as follows:

Name limit Meaning

LIM_MAXTIME 1 Maximum CPU time in milliseconds. If value is positive,
value determines the new maximum. If value is 0, then
the limit is set at ‘unlimited’. If value is negative, the
current value is returned but not modified.

LIM_MAXMEM 2 Maximum total memory allowed for process. If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.

LIM_MAXMALLOC 3 Maximum total size of each Malloc (Mxalloc). If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.

BINDING move.l value,-(sp)
move.w limit,-(sp)
move.w #$11F,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Psetlimit() returns the previous value or ERANGE (-64) if the value for limit
was out of range.

COMMENTS The limits imposed by Psetlimit() are inherited from the parent by child
processes.

SEE ALSO Prusage()

Psetpgrp() - 2.115

T H E A T A R I C O M P E N D I U M

Psetpgrp()
LONG Psetpgrp(pid, newgrp)
WORD pid, newgrp;

Psetpgrp() sets the process group ID of the specified process.

OPCODE 270 (0x10E)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS The process group ID of the process with process ID pid will have its process
group ID changed to newgrp if the calling process has the same user ID or is the
parent of the specified process. If pid is 0, the process group ID of the current
process is sent. If newgrp is 0, the process group ID is set to equal the processes’
(not the callers’ unless pid is also set to 0) process ID.

BINDING move.w newgrp,-(sp)
move.w pid,-(sp)
move.w #$10E,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psetpgrp() returns newgrp if successful or a negative GEMDOS error code
otherwise.

SEE ALSO Pgetpgrp()

Psetuid()
WORD Psetuid(uid)
WORD uid;

Psetuid() sets the user ID of the calling process.

OPCODE 272 (0x110)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS uid is the user ID to assign to the calling process.

BINDING move.w uid,-(sp)
move.w #$110,-(sp)
trap #1
addq.l #4,sp

2.116 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Psetuid() returns uid if successful or a negative GEMDOS error code otherwise.

COMMENTS As with the process group ID, the user ID of a process may only be set if it is
currently 0. This means that once the user ID is set, it may not be changed.

SEE ALSO Pgetuid()

Psigaction()
LONG Psigaction(sig, act, oact)
WORD sig;
SIGACTION * act, *oact;

Psigaction() specifies a default action for the specified signal.

OPCODE 311 (0x137)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

PARAMETERS sig specifies the signal whose action you wish to change. act points to a
SIGACTION structure (as defined below) which defines the handling of future
signals of type sig. oact points to a SIGACTION structure which defines the
handling of pending signals of type sig.

typedef struct
{

LONG sa_handler;
WORD sa_mask;
WORD sa_flags;

} SIGACTION;

Setting sa_hander to SIG_DFL (0) wll cause the default action to take place for
the signal. A value of SIG_IGN (1) will cause the signal to be ignored. Any other
value specifies the address of a signal handler.

The signal handler should expect one LONG argument on its stack which contains
the signal number being delivered. During execution of the handler, all signals
specified in sa_mask are blocked.

sa_flags is a signal-specific flag. When sig is SIGCHLD , setting Bit #0
(SA_NOCLDSTOP) will cause the SIGCHLD signal to be delivered only when
the child process terminated (not when stopped).

BINDING move.w sig,-(sp)
pea act

Psigblock() - 2.117

T H E A T A R I C O M P E N D I U M

pea oact
move.w #$137,-(sp)
trap #1
add.l #12,sp

RETURN VALUE Psigaction() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Calling Psigaction() automatically unmasks the specified signal for delivery.

SEE ALSO Psignal

Psigblock()
LONG Psigblock(mask)
LONG mask;

Psigblock() blocks selected signals from delivery.

OPCODE 278 (0x116)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS mask is a bit mask of signals block. For each bit n set, signal n is added to the
‘blocked’ list.

BINDING move.l mask,-(sp)
move.w #$116,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psigblock() returns the original set of blocked signals in effect prior to the call.

COMMENTS Blocked signals are preserved with Pfork() and Pvfork() calls, however,
children started with Pexec() start with an empty list of blocked signals.

SIGKILL may not be blocked and will be reset by the system.

SEE ALSO Pkill(), Psignal(), Psigpending()

2.118 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Psignal()
LONG Psignal(sig, handler)
WORD sig;
VOID (* handler)(LONG);

Psignal() determines the action taken when a signal is received by the process.

OPCODE 274 (0x112)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS sig specifies the signal whose response you wish to modify. If handler is cast to
SIG_DFL (0) then the default action for the signal will occur when received. If
handler is cast to SIG_IGN (1) then the signal will be ignored by the process.
Otherwise, handler points to a user function which is designed to take action on a
signal. This function is called when a signal is received with a LONG signal
number on the stack.

BINDING pea handler
move.w sig,-(sp)
move.w #$112,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Psignal() returns the old value of the signal handler if successful or a negative
GEMDOS error code otherwise.

COMMENTS Signal handler functions may make any GEMDOS, BIOS, or XBIOS calls
desired but must not make any AES or VDI calls. Signal handlers must either
return with a 680x0 RTS instruction to resume program execution or call
Psigreturn() to clean the stack if it intends to do a ‘C’ longjmp().

Signal handling is preserved across Pfork() and Pvfork() calls. Child processes
started with Pexec() ignore and follow the default action the same as their parents.
Signals which have user functions assigned to them are reset to the default action
for child processes.

SEE ALSO Psigreturn(), Psigblock(), Pkill()

Psigpause() - 2.119

T H E A T A R I C O M P E N D I U M

Psigpause()
LONG Psigpause(mask)
LONG mask;

Psigpause() sets a new signal mask and then suspends the process until a signal is
received.

OPCODE 310 (0x136)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

PARAMETERS mask specifies the signal mask to wait for.

BINDING move.l mask,-(sp)
move.w #$136,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psigpause() returns 0 if successful or non-zero otherwise.

COMMENTS Depending on the state of the signal handler, this call may never return.

SEE ALSO Psigaction(), Pause()

Psigpending()
LONG Psigpending(VOID)

Psigpending() indicates which signals have been sent but not yet delivered to the
calling process.

OPCODE 291 (0x123)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #123,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Psigpending() returns a bit mask of which signals have been sent but not yet
delivered to the calling process because they are being blocked. For each bit n set
in the returned LONG , signal n is waiting for reception.

2.120 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Psigblock(), Psignal(), Psigsetmask()

Psigreturn()
VOID Psigreturn(VOID)

Psigreturn() prepares exit from a signal handler not planning to return via a 680x0
RTS.

OPCODE 282 (0x11A)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$11A,-(sp)
trap #1
addq.l #2,sp

CAVEATS Calling this function and then calling the 680x0 RTS opcode to return will produce
undesired results.

COMMENTS Psigreturn() is only needed by ‘C’ programs which intend to exit the signal
handler by doing a ‘C’ longjmp() rather than simply using the 680x0 RTS.

SEE ALSO Psignal()

Psigsetmask()
LONG Psigsetmask(mask)
LONG mask;

Psigsetmask() defines which signals are to be blocked before being delivered to
the calling application.

OPCODE 279 (0x117)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS mask is a LONG bit mask which defines which signals to block and which signals
to allow. For each bit n set, signal n will be blocked. For each bit n clear, signal n
will be delivered.

BINDING move.l mask,-(sp)
move.w #$117,-(sp)
trap #1

Pterm() - 2.121

T H E A T A R I C O M P E N D I U M

addq.l #6,sp

RETURN VALUE Psigsetmask() returns the original mask of blocked/unblocked signals prior to the
call or a negative GEMDOS error code.

COMMENTS Unlike Psigblock(), mask completely replaces the old mask rather than simply
OR’ing it.

SEE ALSO Pkill(), Psignal(), Psigpending()

Pterm()
VOID Pterm(retcode)
WORD retcode;

Pterm() terminates an application returning the specified error code.

OPCODE 76 (0x4C)

AVAILABILITY All GEMDOS versions.

PARAMETERS retcode indicates the error status upon termination. Some recommended return
values are:

Name retcode Meaning

TERM_OK 0 Program completion without errors

TERM_ERROR 1 Generic Error

TERM_BADPARAMS 2 Bad parameters

TERM_CRASH -1 Process crashed (returned by GEMDOS versions
from 0.15.)

TERM_CTRLC -32 Process terminated by CTRL-C

BINDING move.w retcode,-(sp)
move.w #$4C,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pterm() never returns.

COMMENTS GEMDOS jumps through the etv_term (0x102) vector when this call is made
prior to process termination to allow the process one last chance to clean up. In
addition, all files opened by the process are closed and all memory blocks
allocated by the process are freed.

2.122 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Pexec(), Pterm0()

PtermØ()
VOID PtermØ(VOID)

PtermØ() terminates the application returning an exit code of 0 indicating no
errors.

OPCODE 0 (0x00)

AVAILABILITY All GEMDOS versions.

BINDING clr.w -(sp)
trap #1

RETURN VALUE PtermØ() never returns.

COMMENTS Same as Pterm(0).

SEE ALSO Pterm()

Ptermres()
VOID Ptermres(keep, retcode)
LONG keep;
WORD retcode;

Ptermres() terminates a process leaving a portion of the program’s TPA intact
and removing the memory left from GEMDOS’s memory list.

OPCODE 49 (0x31)

AVAILABILITY All GEMDOS versions.

PARAMETERS keep is the length (in bytes) of the processes’ TPA to retain in memory after exit.
retcode is the code returned on exit.

BINDING move.w retcode,-(sp)
move.l keep,-(sp)
move.w #$31,-(sp)
trap #1
addq.l #8,sp

Pumask() - 2.123

T H E A T A R I C O M P E N D I U M

RETURN VALUE Ptermres() never returns.

COMMENTS This function is normally used by TSR’s to stay resident in memory. Any files
opened by the process are closed. Any memory allocated is, however, retained.

The value for keep is usually the sum of the length of the basepage (0x100), the
length of the text, data, and bss segments of the application, and the length of the
stack. It is important to note that the memory retained by this call may not be freed
at a later point as it is removed from the GEMDOS memory list altogether.

SEE ALSO Pterm0(), Pterm()

Pumask()
WORD Pumask(mode)
WORD mode;

Pumask() defines an inital file and directory creation mask.

OPCODE 307 (0x133)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.92 exists.

PARAMETERS mode specifies the new file access permission mask to apply to all future files
created with Fcreate() and Dcreate(). mode is a WORD bit mask of various
access permission flags as defined in Fchmod().

BINDING move.w mode,-(sp)
move.w #$133,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pumask() returns the original mask in effect prior to the call.

SEE ALSO Dcreate(), Fcreate(), Fchmod()

Pusrval()
LONG Pursval(val)
LONG val;

Pusrval() reads/modifies a user defined value associated with a process.

2.124 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 280 (0x118)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS val specifies the new value of the LONG associated with this process. If val is -1
then this value is not changed but still returned.

BINDING move.w #$118,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pusrval() returns the original value of the user LONG prior to the call.

COMMENTS The user-defined longword set by this call is inherited by child processes and may
be utilized as desired.

Pvfork()
WORD Pvfork(VOID)

Pvfork() creates a duplicate of the current process which shares address and data
space with the parent.

OPCODE 275 (0x113)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$113,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pvfork() returns the new process ID to the parent and 0 to the child. If an error
occurs the parent receives a negative GEMDOS error code.

CAVEATS If the parent is in supervisor mode when this call is made the child is placed in
user mode anyway.

COMMENTS The child process spawned by this function shares all address and data space with
the parent. In other words, any variables altered by the parent will also be altered
by the child and vice versa. The child process should not call Mshrink() as its
TPA is already correctly sized.

The two processes do not execute concurrently. The parent is blocked until either
the child terminates or calls Pexec()’s mode 200.

Pwait() - 2.125

T H E A T A R I C O M P E N D I U M

SEE ALSO Pexec(), Pfork()

Pwait()
LONG Pwait(VOID)

Pwait() attempts to determine the exit code of a stopped or terminated child
process.

OPCODE 265 (0x109)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$109,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pwait() returns 0 if no child processes have terminated or a 32-bit return code for
a child process which has been terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (via Pterm(), Ptermres(), or Pterm0()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal returns 0xnn7F where nn is
the signal number which stopped it. A process which was terminated as the result
of a signal returns 0xnn00 where nn is the signal number which killed the process.

COMMENTS Pwait() will block the calling process until at least one child has been stopped or
terminated. Once the exit code of a process has been returned with this call it will
be not be returned again with this call (unless it had been stopped and is restarted
and stopped again). This call is identical to Pwait3(2, NULL);

SEE ALSO Pexec(), Pterm(), Ptermres(), Pterm0()

Pwait3()
LONG Pwait3(flag, rusage)
WORD flag;
LONG * rusage;

Pwait3() determines the exit code of any children of the calling process which
were stopped and/or terminated.

2.126 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 284 (0x11C)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS flag is a bit mask which specifies the specifics of this call as follows:

Name Mask Meaning

PW_NOBLOCK 0x01 If set, the function will not block the calling process if
no child has been stopped or terminated, rather it
will simply return 0. If clear, the process will be
blocked until a child of the process has terminated
or is stopped.

PW_STOPPED 0x02 If set, return exit codes for processes which have
been terminated as well as stopped. If clear, only
return exit codes for processes which have actually
terminated.

rusage points to an array of two LONGs which are filled in with resource usage
information of the stopped or terminated process. The first LONG contains the
number of milliseconds used by the child in user code. The second LONG
indicates the number of milliseconds spent by the process in the kernel. rusage
may be set to NULL if this information is undesired.

BINDING pea rusage
move.w flag,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Pwait3() returns 0 if no child processes have been stopped and/or terminated
(depending on flag) or a 32-bit return code for a child process which has been
terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (via Pterm(), Ptermres(), or Pterm0()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal returns 0xnn7F where nn is
the signal number which stopped it. A process which was terminated as the result
of a signal returns 0xnn00 where nn is the signal number which killed the process.

SEE ALSO Pwait(), Pexec(), Pterm(), Pterm0(), Ptermres(), Prusage()

Pwaitpid() - 2.127

T H E A T A R I C O M P E N D I U M

Pwaitpid()
LONG Pwaitpid(pid, flag, rusage)
WORD pid, flag;
LONG * rusage;

Pwaitpid() returns exit code information about one or more child processes.

OPCODE 314 (0x13A)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.96 exists.

PARAMETERS pid specifies the children whose exit codes are of interest as follows.

A pid of PWP_ALL (-1) indicates that all children are of interest. A pid of less
than -1 indicates that any child whose process group is -pid is of interest. A pid of
PWP_GROUP (0) indicates that any child with the same process group ID of the
parent is of interest. A pid greater than 0 indicates that the child with the given
process ID is of interest.

For the usage of flag and rusage see Pwait3().

BINDING pea rusage
move.w flag,-(sp)
move.w #$13A,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE See Pwait3().

SEE ALSO Pwait(), Pwait3()

Salert()
VOID Salert(str)
char *str;

Salert() sends an alert string to the alert pipe ‘U:\PIPE\ALERT\’.

OPCODE 316 (0x13C)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.98 exists.

PARAMETERS str should point to a NULL terminated character string containing the alert

2.128 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

message to display. The message should not contain any carriage returns or escape
characters. The string should not be formatted as in form_alert() .

BINDING pea str
move.w #$13C,-(sp)
trap #1
addq.l #6,sp

CAVEATS Messages sent by Salert() are only delivered if a separate application is present
which was designed to listen to the alert pipe and post its contents.

SEE ALSO form_alert()

Super()
VOIDP Super(stack)
VOIDP stack;

Super() allows you to interrogate or alter the state of the 680x0.

OPCODE 32 (0x20)

AVAILABILITY All GEMDOS versions.

PARAMETERS stack defines the meaning of the call as follows:

Name stack Meaning

SUP_SET (VOIDP)0 The processor is placed in supervisor mode and the
old supervisor stack is returned.

SUP_INQUIRE (VOIDP)1 This interrogates the current mode of the processor.
If the processor is in user mode a SUP_USER (0) is
returned, otherwise a SUP_SUPER (1) is returned.

— >1 The processor is placed in user mode and the
supervisor stack is reset to stack.

BINDING pea stack
move.w #$20,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Super() returns a different value based on the stack parameter. The various return
values are explained above.

CAVEATS You should never call the AES in supervisor mode. In addition, supervisor mode
should be entered and left in the same stack context (same ‘C’ function) or stack
corruption can result.

Sversion() - 2.129

T H E A T A R I C O M P E N D I U M

COMMENTS To execute portion of a program in supervisor mode you normally call Super()
with a parameter of 0 and save the return value. When ready to return to user mode
you call Super() again with the saved return value as a parameter.

Supervisor mode should be used sparingly under MiNT as no task switching can
occur.

SEE ALSO Supexec()

Sversion()
UWORD Sversion(VOID)

Sversion() returns the current GEMDOS version number.

OPCODE 48 (0x30)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$30,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Sversion() returns a UWORD containing the GEMDOS minor version number in
the upper word and the major version number in the lower word. Current values
returned by Atari TOS’s are:

Return Value TOS versions (normally) found in:

0x1300 (0.13) TOS 1.0, TOS 1.02

0x1500 (0.15) TOS 1.04, TOS 1.06

0x1700 (0.17) TOS 1.62

0x1900 (0.19) TOS 2.01, TOS 2.05, TOS 2.06, TOS 3.01, TOS 3.05, TOS 3.06

0x3000 (0.30) TOS 4.00, TOS 4.01, TOS 4.02, TOS 4.03, TOS 4.04,
MultiTOS 1.00, MultiTOS 1.08

COMMENTS The GEMDOS number is not associated with the TOS or AES version number.
You should check for GEMDOS or MiNT version numbers when trying to
determine the presence or properties of a GEMDOS function.

2.130 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Syield()
VOID Syield(VOID)

Syield() surrenders the remainder of the callers’ current process timeslice.

OPCODE 255 (0xFF)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$FF,-(sp)
trap #1
addq.l #2,sp

SEE ALSO Pause(), Fselect()

Sysconf()
LONG Sysconf(inq)
WORD inq;

Sysconf() returns information about the limits or capabilities of the currently
running version of MiNT .

OPCODE 290 (0x122)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS inq determines the return value as follows:

Name inq Return Value

SYS_MAXINQ -1 Maximum legal value for inq.

SYS_MAXREGIONS 0 Maximum memory regions per process.

SYS_MAXCOMMAND 1 Maximum length of Pexec() command string.

SYS_MAXFILES 2 Maximum number of open files per process.

SYS_MAXGROUPS 3 Maximum number of supplementary group ID’s.

SYS_MAXPROCS 4 Maximum number of processes per user.

BINDING move.w inq,-(sp)
move.w #$122,-(sp)
trap #1
addq.l #4,sp

Talarm() - 2.131

T H E A T A R I C O M P E N D I U M

RETURN VALUE See above.

COMMENTS If the requested item returns UNLIMITED (0x7FFFFFFF) then that item is
unlimited.

SEE ALSO Dpathconf()

Talarm()
LONG Talarm(time)
LONG time;

Talarm() reads/sets a process alarm for the current process.

OPCODE 288 (0x120)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS time specifies the length of time (in milliseconds) to wait before a SIGALRM
signal is delivered. If time is 0 then any previously set alarm is cancelled. If time
is negative the function does not modify any alarm currently set.

BINDING move.l time,-(sp)
move.w #$120,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Talarm() returns 0 i f no alarm was scheduled prior to this call or the amount of
time remaining (in milliseconds) before the alarm is triggered.

CAVEATS An alarm with less than 1000 remaining milliseconds will return a value of 0.

COMMENTS If no SIGALRM signal handler has been set up when the alarm is triggered, the
process will be killed.

SEE ALSO Pause(), Psignal()

Tgetdate()
UWORD Tgetdate(VOID)

Tgetdate() returns the current GEMDOS date.

2.132 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 42 (0x2A)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$2A,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Tgetdate() returns a bit array UWORD arranged as follows:

Bits 15-9 Bits 8-5 Bits 4-0

Years since 1980 Month (1-12) Date (0-31)

SEE ALSO Tgettime(), Tsetdate(), Gettime()

Tgettime()
UWORD Tgettime(VOID)

Tgettime() returns the GEMDOS system time.

OPCODE 44 (0x2C)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$2C,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Tgettime() returns a bit array arranged as follows:

Bits 15-11 Bits 10-5 Bits 4-0

Hour (0-23) Minute (0 to 59) Secs/2 (0 to 29)

SEE ALSO Tgetdate(), Tsettime(), Gettime()

Tsetdate()
WORD Tsetdate(date)
UWORD date;

Tsetdate() sets the current GEMDOS date.

Tsettime() - 2.133

T H E A T A R I C O M P E N D I U M

OPCODE 43 (0x2B)

AVAILABILITY All GEMDOS versions.

PARAMETERS date is a bit array arranged as illustrated under Tgetdate().

BINDING move.w date,-(sp)
move.w #$2B,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Tsetdate() returns 0 if the operation was successful or non-zero if a bad date is
given.

CAVEATS GEMDOS version 0.13 did not inform the BIOS of the date change and hence
would not change the IKBD date or the date of a battery backed-up clock,

SEE ALSO Tgetdate(), Tsettime(), Settime()

Tsettime()
WORD Tsettime(time)
UWORD time;

Tsettime() sets the current GEMDOS time.

OPCODE 45 (0x2D)

AVAILABILITY All GEMDOS versions.

PARAMETERS time is a bit array arranged as illustrated under Tgettime().

BINDING move.w time,-(sp)
move.w #$2D,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Tsettime() returns 0 if the time was set or non-zero if the time given was invalid.

CAVEATS GEMDOS version 0.13 did not inform the BIOS of the date change and hence
would not change the IKBD date or the date of a battery backed-up clock.

SEE ALSO Tgettime(), Tsetdate(), Settime()

