
T H E A T A R I C O M P E N D I U M

LINE-A Function Reference

$A000 - Initialize – 8.11

T H E A T A R I C O M P E N D I U M

$A000 - Initialize
Return pointers to the Line-A variable structures.

EXAMPLE

BINDING

; Retrieve Line-A variable table address
; and store in A5 for other bindings

.dc.w $A000

.move.l a0,a5 ; Line-A variables

.move.l a1,a6 ; System font headers

RETURN VALUE The initialize function returns the following information:

Register Contents

D0 Pointer to Line-A variable table.

A0 Pointer to Line-A variable table.

A1 Pointer to a NULL terminated array of pointers to system font headers.

A2 Pointer to a longword array containing sixteen pointers which are addresses of
the actual Line-A functions in memory. For example, JSR’ing through the
pointer in the first array element has the same result as calling the Initialize
instruction by an exception except that the function must be called from
supervisor mode.

COMMENTS This call is required to return the address of the Line-A variable structure needed
for all other Line-A calls. All processes (including the VDI) share this structure
so don’t expect variables to remain constant between calls.

SEE ALSO v_opnvwk()

$A001 - Plot Pixel
Plot a single pixel at the specified coordinates.

PARAMETERS INTIN points to a WORD containing the color register of the pixel to plot at the
specified coordinates. PTSIN points to two WORDs which are the X and Y
coordinates respectively.

EXAMPLE

BINDING

; Plot a pixel at (10, 10) using color 1

move.l #intin,8(a5)
move.l #ptsin,12(a5)
.dc.w $A001

.data
intin:

.dc.w 1
ptsin:

8.12 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

.dc.w 10, 10

SEE ALSO v_pmarker()

$A002 - Get Pixel
Get the color register of the pixel at the specified coordinates.

PARAMETERS PTSIN points to two words which are the X and Y coordinates of the pixel to
read.

EXAMPLE

BINDING

; Read the color index of point (10, 10)

move.l #ptsin,12(a5)
.dc.w $A002

.data
ptsin:

.dc.w 10, 10

RETURN VALUE The color register of the pixel is returned in D0.

SEE ALSO v_getpixel()

$A003 - Arbitrary Line
Draw a line between any two coordinates.

PARAMETERS COLBIT0-4 are set appropriately to determine the line color. LSTLIN is a flag in
which a value of 0 specifies to draw the last point in each line or a value of 1
which specifies not to. LNMASK specifies the pattern mask to apply to the line.
WRMODE specifies the write mode of the function (0-3). (X1, Y1), and (X2, Y2)
give the starting and ending coordinates of the line.

EXAMPLE

BINDING

;Draw a solid line from (0, 0) to (100, 100)

move.w #1,24(a5) ; COLBIT 0
move.w #1,26(a5) ; COLBIT 1
move.w #1,28(a5) ; COLBIT 2
move.w #1,30(a5) ; COLBIT 3
move.w #0,32(a5) ; LSTLIN
move.w #$FFFF,34(a5) ; LNMASK
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.w #100,42(a5) ; Y2
.dc.w $A003

$A004 - Horizontal Line – 8.13

T H E A T A R I C O M P E N D I U M

CAVEATS LNMASK is modified as a result of this call.

SEE ALSO $A004, v_pline()

$A004 - Horizontal Line
Draw a horizontal line between the specified coordinates.

PARAMETERS COLBIT0-3 defines the color of the line and WRMODE determines the write mode
(0-3). (X1, Y1) and (X2, Y1) determine the starting and ending points of the line.
PATMSK is AND’ed with Y1 to determine a line index into the pattern pointed to
by PATPTR. PATMSK is normally the number of lines in the pattern (should be an
even power of 2) minus one. If MFILL is non-zero, WMODE is disregarded and
the fill is colored from the values in COLBIT0-3.

EXAMPLE

BINDING

;Draw a horizontal dashed line from (0, 10) to (100, 10)

move.w #1,24(a5) ; COLBIT 0
move.w #1,26(a5) ; COLBIT 1
move.w #1,28(a5) ; COLBIT 2
move.w #1,30(a5) ; COLBIT 3
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.l #pat,46(a5) ; PATPTR
move.w #0,50(a5) ; PATMSK
move.w #0,52(a5) ; MFILL
.dc.w $A004

SEE ALSO v_pline()

$A005 - Filled Rectangle
Draw a filled rectangle at the specified coordinates.

PARAMETERS CLIP is a flag which when set to 1 enables clipping and when set to 0 disables it.
All output of this function is confined to the region bounded by
(XMINCL, YMINCL) and (XMAXCL, YMAXCL). Other parameters are
consistent with the definitions given under $A004.

EXAMPLE

BINDING

; Draw a filled rectangle with its upper
; left corner at (0, 0) and its lower
; right corner at (100, 100). Clip the
; rectangle to within (10, 10) and
; (90, 90)

move.w #1,24(a5) ; COLBIT0

8.14 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

move.w #1,26(a5) ; COLBIT1
move.w #1,28(a5) ; COLBIT2
move.w #1,30(a5) ; COLBIT3
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.w #100,44(a5) ; Y2
move.l #stipple,46(a5) ; PATPTR
move.w #1,50(a5) ; PATMSK
move.w #0,52(a5) ; MFILL
move.w #1,54(a5) ; CLIP
move.w #10,56(a5) ; XMINCL
move.w #10,58(a5) ; YMINCL
move.w #90,60(a5) ; XMAXCL
move.w #90,62(a5) ; YMAXCL
.dc.w $A005

.data
stipple:

.dc.w $AAAA

.dc.w $5555

SEE ALSO v_bar(), vr_recfl()

$A006 - Filled Polygon
Draw a filled polygon line-by-line.

PARAMETERS PTSIN contains the X/Y coordinate pairs of the vertices of the polygon with the
last point being equal to the first. CONTRL[1] specifies the number of vertices.
The rest of the variables are consistent with previous usages.

EXAMPLE

BINDING

; Draw a filled polygon with vertices at
; (0, 0), (319, 120), and (25, 199).

move.l #ptsin,12(a5) ; PTSIN
move.l #contrl,4(a5) ; CONTRL
move.w #1,24(a5) ; COLBIT0
move.w #1,26(a5) ; COLBIT1
move.w #1,28(a5) ; COLBIT2
move.w #1,30(a5) ; COLBIT3
move.w #0,36(a5) ; WRMODE
move.w #stipple,46(a5) ; PATPTR
move.w #1,50(a5) ; PATLEN
move.w #0,52(a5) ; MFILL
move.w #0,54(a5) ; CLIP

; loop to draw the polygon
move.w #0,40(a5) ; upper Y line
move.w #199,d4 ; lowest Y line

; - upper Y line
loop:

.dc.w $A006
addq.w #1,40(a5)

$A007 - BitBlt – 8.15

T H E A T A R I C O M P E N D I U M

dbra d4,loop

.data
ptsin:

.dc.w 0, 0, 319, 120, 25, 199, 0, 0
contrl:

.dc.w 0, 3
stipple:

.dc.w $AAAA

.dc.w $5555

CAVEATS Register A0, X1, and X2 are destroyed as a result of this call.

SEE ALSO v_fillarea()

$A007 - BitBlt
Perform a bit-block transfer.

PARAMETERS The address of a BitBlt parameter block is passed in register A6. That structure is
defined with the following members:

Member Offset/Type Meaning

B_WD +0 (WORD) Width of block to blit (in pixels)

B_HT +2 (WORD) Height of block to blit (in pixels)

PLANE_CT† +4 (WORD) Number of bit planes to blit.

FG_COL† +6 (WORD) Bit array used to create index into OP_TAB . FG_COL
contributes its bit #’n’ (where ‘n’ is the plane number) to bit
#1 of the index used to select the operation code from
OP_TAB .

BG_COL† +8 (WORD) Bit array used to create index into OP_TAB . BG_COL
contributes its bit #’n’ (where ‘n’ is the plane number) to bit
#0 of the index used to select the operation code from
OP_TAB .

OP_TAB +10 (LONG) OP_TAB is a 4 byte array containing four logic operation
codes (0 to 16) to be applied to the image. The table is
indexed by using the bit in FG_COL and BG_COL
corresponding to the current plane as bit #1 and bit #0
respectively yielding an offset into OP_TAB of 0-3.

S_XMIN +14 (WORD) X pixel offset to source upper left.

S_YMIN +16 (WORD) Y pixel offset to source upper left.

S_FORM +18 (WORD) Address of the source form.

S_NXWD +22 (LONG) Number of bits per pixel.

S_NXLN +24 (WORD) Byte width of form.

S_NXPL +26 (WORD) Byte offset between planes (always 2).

D_XMIN +28 (WORD) X pixel offset to destination upper left.

D_YMIN +30 (WORD) Y pixel offset to destination upper left.

8.16 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

D_FORM +32 (LONG) Address of the destination form.

D_NXWD +36 (WORD) Number of bits per pixel.

D_NXLN +38 (WORD) Byte width of form.

D_NXPL +40 (WORD) Byte offset between planes (always 2).

P_ADDR +42 (LONG) Address of pattern buffer (0 = no pattern).

P_NXLN +46 (WORD) Bytes of pattern per line (should be even).

P_NXPL +48 (WORD) Bytes of pattern per plane (if using a single plane fill with a
multi-plane destination, this should be 0).

P_MASK +50 (WORD) P_MASK is found by the expression:

If P_NXLN = 2 ^ n then
P_MASK = (length in words - 1) << n

SPACE +52 (WORD) 24 bytes of blank space which must be reserved as work
area for the function.

†These members may be altered by this function.

EXAMPLE

BINDING

; Perform a blit using the information located
; at bprmblk

lea bprmblk,a6
.dc.w $A007

SEE ALSO vro_cpyfm(), vrt_cpyfm()

$A008 - TextBlt
Blit a single character to the screen.

PARAMETERS When performing this call, the following Line-A variables are evaluated:

Variable Meaning

WMODE Writing mode (see comments below).

CLIP,
XMINCL,
YMINCL,
XMAXCL,
YMAXCL

Standard clipping flags and extents.

XDDA Scaling accumulator (should be initialized to $8000 prior to each TextBlt call
when scaling).

DDAINC This amount specifies the fractional amount to scale the character outputted
by. If scaling down, this value may by found by the formula:

0x100 * scaled size / actual size
If scaling up, this value may be found with the formula:

0x100 * (scaled size - actual size) / actual size

This variable is only evaluated if scaling is active.
SCALDIR Scaling direction (1 = up, 0 = down).

$A008 - TextBlt – 8.17

T H E A T A R I C O M P E N D I U M

MONO If 1 set to monospacing mode, if 0 set to proportional spacing mode.

SOURCEX,
SOURCEY

SOURCEX is the pixel offset into the font form of the character you wish to
render. SOURCEY is usually 0 indicating that you wish to render the character
from the top.

DESTX,
DESTY

DESTX and DESTY specify the destination screen coordinates of the
character.

DELX, DELY DELX and DELY specify the width and height of the character to print.

FBASE Pointer to start of font data.

FWIDTH Width of font form.

STYLE STYLE is a mask of the following bits indicating special effects:
0x01 = Bold
0x02 = Light
0x04 = Italic
0x08 = Underlined
0x10 = Outlined

LITEMASK Mask used to lighten text (usually $5555).

SKEWMAS
K

Mask used to italicize text (usually $5555).

WEIGHT Width by which to thicken boldface text (should be set from font header).

ROFF Offset above character baseline when skewing (set from font header).

LOFF Offset below character baseline when skewing (from font header).

SCALE Scaling flag (0 = no scaling, 1 = scale text).

CHUP Character rotation vector (may be 0, 900, 1800, or 2700).

TEXTFG Text foreground color.

SCRTCHP Pointer to start of text special effects buffer (should be twice as large as the
largest distorted character and is only required when using a special effect).

SCRPT2 Offset of scaling buffer in SCRTCHP (midpoint).

TEXTBG Text background color.

EXAMPLE

BINDING

; Print a NULL-terminated string with
; no effects or clipping

move.w #0,36(a5) ; WMODE
move.w #0,54(a5) ; CLIP
move.w #1,106(a5) ; TEXTFG
move.w #0,114(a5) ; TEXTBG
move.w #100,76(a5) ; DESTX
move.w #100,78(a5) ; DESTY
move.w #4,90(a5) ; STYLE
move.w #0,102(a5) ; SCALE
move.w #1,70(a5) ; MONO

; Find the 8x8 font
move.w 4(a6),a6 ; Address of 8x8

; font
move.w 76(a6),84(a5) ; FBASE
move.w 80(a6),88(a5) ; FWIDTH
move.w 82(a6),82(a5) ; DELY

; Print the string
lea string,a2
move.l 72(a6),a3 ; offset table

8.18 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

moveq.l #0,d0
print:

move.b (a2)+,d0 ; Get next char
ble end
sub.w 36(a6),d0 ; Fix offset
lsl.w #1,d0 ; Double for

; WORD offset
move.w 0(a3,d0),72(a5) ; SOURCEX
move.w 2(a3,d0),d0 ; x of next char
sub.w 72(a5),d0 ; get true width
move.w d0,80(a5) ; DELX
moveq.l #0,74(a5) ; SOURCEY
movem.l a0-a2,-(sp) ; Save a0-a2
.dc.w $A008
movem.l (a7)+,a0-a2 ; Restore regs
bra print

end:
rts

.data
string:

.dc.b “The Atari Compendium”,0

COMMENTS The value for WMODE is a special case with TextBlt . Values from 0-3 translate
to the standard VDI modes. Values from 4-19 translate to the BitBlt modes 0-15.

SEE ALSO v_gtext()

$A009 - Show Mouse
Show the mouse cursor.

PARAMETERS No parameters required. Optionally, INTIN can be made to point to a WORD
value of 0 to force the mouse cursor to be displayed regardless of the number of
times it was hidden.

EXAMPLE

BINDING

; Show the mouse regardless of the number
; of times it was hidden

move.l #intin,8(a5) ; INTIN
.dc.w $A009

.data
intin:

.dc.w 0

COMMENTS ‘Show’ and ‘Hide’ mouse calls are nested, that is, in order to return the mouse
cursor to its original state, it must be ‘shown’ the same number of times it was
‘hidden’.

SEE ALSO v_show_c(), graf_mouse()

$A00A - Hide Mouse – 8.19

T H E A T A R I C O M P E N D I U M

$A00A - Hide Mouse
Hide the mouse cursor.

EXAMPLE

BINDING

; Remove the mouse from the screen

.dc.w $A00A

COMMENTS See ‘Show Mouse’.

SEE ALSO v_hide_c(), graf_mouse()

$A00B - Transform Mouse
Change the mouse’s form.

PARAMETERS On entry INTIN should point to a structure containing the new mouse form data.
The format of the structure is defined under the entry for vsc_form().

EXAMPLE

BINDING

; Change the mouse form to the data held in
; the newmouse structure.

move.b -339(a5),d0 ; Save old value
move.b #0,-339(a5) ; Disable mouse

; interrupts
move.l #newmouse,8(a5) ; INTIN
.dc.w $A00B
move.b d0,-339(a5) ; Restore

; MOUSE_FLAG

COMMENTS The old data can be saved from the information stored in the Line-A variable table
at offset -356. To avoid ‘mouse droppings’ you should disable mouse interrupts by
setting MOUSE_FLAG (offset -339) to 0 and restoring it when done.

SEE ALSO vsc_form(), graf_mouse()

$A00C - Undraw Sprite
Undraw a previously drawn sprite.

PARAMETERS Prior to calling this function, A2 should be loaded with a pointer to the ‘sprite
save block’ defined when drawing the sprite. For the format of this data, see
‘Draw Sprite’

EXAMPLE ; ‘Undraw’ sprite previously drawn from data

8.20 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

BINDING ; stored in savesprite.

lea savesprite,a2
.dc.w $A00C

CAVEATS Register A6 is destroyed as a result of this call.

COMMENTS When ‘undrawing’ sprites, they should be removed in reverse order of drawing to
avoid the possibility of creating garbage on screen.

$A00D - Draw Sprite
Draw a 16x16 sprite on the screen.

PARAMETERS Prior to calling this function, four 68x00 registers must be initialized. D0 and D1
should contain the horizontal and vertical position respectively of the coordinates
of the sprite to draw. This is relative to the ‘hot spot’ of the sprite as defined in the
sprite definition block.

A0 should contain a pointer to a sprite definition block defined as follows:

Offset/Type Meaning

0x0000
(WORD)

X offset of ‘hot spot’. This value is subtracted from the value given in D0 to
yield the actual screen position of the upper-left pixel.

0x0002
(WORD)

Y offset of ‘hot spot’. This value is subtracted from the value given in D1 to
yield the actual screen position of the upper-right pixel.

0x0004
(WORD)

Format flag. This value specifies the mode in which the mouse pointer will be
drawn. A value of 1 specifies ‘VDI mode’ whereas -1 specifies X-OR mode.
The default is 1.

0x0006
(WORD)

Background color of sprite.

0x0008
(WORD)

Foreground color of sprite.

0x000A
(32 WORDs)

Sprite form data. The bitmap data consists of two 16x16 rasters, one each
for the mask and data portion of the form. The data is presented in
interleaved format. The first WORD of the mask portion is first, followed by
the first WORD of the data portion, and so on.

Register A2 is a pointer to a buffer which will be used to save the screen area
where the sprite is drawn. The size of the buffer can be determined by the
following formula:

(10 + (VPLANES * 64))

EXAMPLE

BINDING

; Draw a sprite at (100, 100) whose data
; is stored at spritedef with a valid save
; buffer at savebuf.

move.w #100,d0 ; X position

$A00E - Copy Raster – 8.21

T H E A T A R I C O M P E N D I U M

move.w #100,d1 ; Y position
move.l #spritedef,a0 ; Sprite form
move.l #savebuf,a2 ; Save buffer
.dc.w $A00D

CAVEATS Register A6 is destroyed as a result of this call.

COMMENTS In order to avoid the mouse form running into any sprites you draw, the mouse
should be hidden before drawing and restored afterwards. It may also be
advisable to call Vsync() prior to each call to avoid screen flicker.

$A00E - Copy Raster
Copy a raster form using opaque or transparent mode.

PARAMETERS INTIN should point to a WORD array whose first entry specifies the write mode
of the operation. In transparent mode, this is a VDI standard mode (0-3), however
in opaque mode the full range of BitBlt modes (0-15) are available. In transparent
mode, the second and third array entries of INTIN contain the foreground and
background color of the destination copy respectively.

CONTRL should point to a memory buffer which is filled in with the source and
destination MFDB ’s (Memory Form Definition Block’s) at offsets 14 and 18
respectively. The structure of an MFDB is discussed under vro_cpyfm().

PTSIN should point to an array of 8 WORD’s containing the pixel offsets for the
blit in the order SX1, SY1, SX2, SY2, DX1, DY1, DX2, DY2.

COPYTRAN specifies the write mode. A value of 0 indicates an opaque copy
while a value of 1 indicates a transparent copy.

The settings for CLIP, XMINCL, YMINCL, XMAXCL, and YMAXCL are utilitized
by this call.

EXAMPLE

BINDING

; Copy a 32x32 raster form ‘myrast’ from a
; buffer in memory to the ST medium resolution
; screen at (100, 100) using transparent mode.

move.l #contrl,4(a5) ; CONTRL
move.l #srcmfdb,contrl+14
move.l #destmfdb,contrl+18

move.l #intin,4(a5) ; INTIN
move.l #ptsin,4(a5) ; PTSIN
move.w #1,116(a5) ; COPYTRAN
move.w #0,54(a5) ; CLIP

; Fill in some info for MFDB’s

8.22 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

move.l #myrast,srcmfdb ; Source raster
move.w #$02,-(sp) ; Physbase()
trap #14
addq.l #2,sp
move.l d0,destmfdb

.dc.w $A00E

.data
contrl:

.dc.w 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
intin:

.dc.w 0, 1, 0
ptsin:

.dc.w 0, 0, 15, 15, 100, 100, 115, 115
srcmfdb:

.dc.w 0, 0, 16, 16, 1, 0, 0, 0, 0, 0
destmfdb:

.dc.w 0, 0, 320, 200, 16, 0, 2, 0, 0, 0
myrast:

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

COMMENTS For a more indepth explanation, refer to the VDI calls parallel to these,
vro_cpyfm() and vrt_cpyfm() .

SEE ALSO vro_cpyfm(), vrt_cpyfm()

$A00F - Seed Fill
Seed fill an irregularly shaped region.

PARAMETERS INTIN points to a word value which specifies the mode of this function. If the
value is negative, color mode is used. In color mode, the fill spreads from the
initial point until it hits a color other than that of the initial point. If the value is
positive, outline mode is used. It then is interpreted as the VDI color index value
at which to stop the fill.

PTSIN points to an array of two WORDs which specify the X and Y coordinates
respectively of the inital fill point.

CUR_WORK should point to a WORD array of 16 words with the sixteenth
WORD being the fill color specified as a VDI color index.

WMODE specified the VDI writing mode of the fill (0-3). PATPTR and PATMSK

$A00F - Seed Fill – 8.23

T H E A T A R I C O M P E N D I U M

define the fill pattern (as defined in ‘Horizontal Line ’).

SEEDABORT points to a user routine which can abort the fill, if desired, when
called. This routine is called once for each line of the fill. It should zero register
D0 to continue or place a non-zero value in it to abort.

EXAMPLE

BINDING

; Seed fill an area starting at (100, 100)
; in color mode with a clip region defined
; as the VDI rectangle (50, 50), (200, 200).

move.l #intin,8(a5) ; INTIN
move.l #ptsin,12(a5) ; PTSIN
move.l #cur_work,-464(a5) ; CUR_WORK
move.l #seedabort,118(a5) ; SEEDABORT
move.w #0,36(a5) ; WMODE
move.l #stipple,46(a5) ; PATPTR
move.w #0,50(a5) ; PATMASK
move.w #0,52(a5) ; MFILL
move.w #50,56(a5) ; XMINCL
move.w #50,58(a5) ; YMINCL
move.w #200,60(a5) ; XMAXCL
move.w #200,62(a5) ; YMAXCL
.dc.w $A00F

seedabort:
moveq.l #0, d0 ; Clear D0
rts

.data
intin:

.dc.w -1
ptsin:

.dc.w 100, 100
cur_work:

.dc.w 0, 0, 0, 0, 0, 0, 0, 0

.dc.w 0, 0, 0, 0, 0, 0, 0, 1
stipple:

.dc.w $AAAA

.dc.w $5555

COMMENTS The clipping variables XMINCL, YMINCL, XMAXCL, and YMAXCL must always
be set as they are interpreted regardless of the clipping flag.

SEE ALSO v_contourfill()

