
T H E A T A R I C O M P E N D I U M

XBIOS Function Reference

Bconmap() – 4.23

T H E A T A R I C O M P E N D I U M

Bconmap()
LONG Bconmap(devno)
WORD devno;

Bconmap() maps a serial device to BIOS device #1. It is also used to add serial
device drivers to the system.

OPCODE 44 (0x2C)

AVAILABILITY To reliably check that Bconmap() is supported, the TOS version must be 1.02 or
higher and the following function should return a TRUE value.

#define BMAP_EXISTS 0

BOOL IsBconmap(VOID)
{

return (Bconmap(0) == BMAP_EXISTS);
}

PARAMETERS The value of devno has the following effect:

Name devno Meaning

BMAP_CHECK 0 Verify the existence of the call (systems without
Bconmap() will return the function opcode 44).

— 1-5 These are illegal values (will return 0).

See XBIOS Serial
Port Mapping for

constants.

6- Redefine BIOS device 1 (the GEMDOS ‘aux:’ device) to
map to the named serial device. All Bcon...(1,...) ,
Rsconf() , and Iorec() calls will return information for the
named device. Returns the old value.

BMAP_INQUIRE -1 Don’t change anything, simply return the old value.

BMAP_MAPTAB -2 Return a pointer to the serial device vector table (see
below).

BINDING move.w devno,-(sp)
move.w #$2C,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE See above.

CAVEATS You should never install the 38th device (BIOS device number 44). It would be
indistinguishable from the case where Bconmap() was unavailable. In the unlikely
event that this case arises, you should install two new devices and assign your new
device to the second one.

All current versions of Falcon030 TOS (4.00 – 4.04) contain a bug that prevents

4.24 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

the BIOS from accessing the extra available devices. A patch program named
FPATCH2.PRG is available from Atari Corporation to correct this bug in
software.

COMMENTS To add a serial device to the table, use Bconmap(-2) to return a pointer to a
BCONMAP structure. maptab points to a list of MAPTAB structures (the first
entry in MAPTAB is the table for device number 6). The list will contain
maptabsize devices. Allocate a block of memory large enough to store the old
table plus your new entry and copy the old table and your new device structure
there making sure to increment maptabsize. Finally, alter maptab to point to your
new structure.

typedef struct
{

WORD (*Bconstat)();
LONG (*Bconin)();
LONG (*Bcostat)();
VOID (*Bconout)();
ULONG (*Rsconf)();
IOREC *iorec; /* See Iorec() */

} MAPTAB;

typedef struct
{

MAPTAB *maptab;
WORD maptabsize;

} BCONMAP;

SEE ALSO Bconin(), Bconout(), Rsconf(), Iorec()

Bioskeys()
VOID Bioskeys(VOID)

Bioskeys() is used to reset to the power-up defaults of the keyboard configuration
tables.

OPCODE 24 (0x18)

AVAILABILITY All TOS versions.

BINDING move.w #$18,-(sp)
trap #14
addq.l #4,sp

COMMENTS This call is only necessary to restore changes made by modifying the tables given
by Keytbl() .

Blitmode() – 4.25

T H E A T A R I C O M P E N D I U M

SEE ALSO Keytbl()

Blitmode()
WORD Blitmode(mode)
WORD mode;

Blitmode() detects a hardware BLiTTER chip and can alter its configuration if
present.

OPCODE 64 (0x40)

AVAILABILITY This call is available as of TOS 1.02.

PARAMETERS mode is used to set the BLiTTER configuration. If mode is BLIT_INQUIRE (-1),
the call will return the current state of the BLiTTER without modifying its state.
To change the method of OS blit operations, call Blitmode() with one of the
following values:

Name mode Meaning

BLIT_SOFT 0 If set, use hardware BLiTTER chip, otherwise use
software routines.

BLIT_HARD 1 If set, hardware BLiTTER chip is available.

BINDING move.w mode,-(sp)
move.w #$40,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Blitmode() returns the old mode value. Bit #0 of mode contains the currently set
blitter mode as shown above. Bit #1 is set to indicate the presence of a hardware
blitter chip or clear if no blitter chip is installed.

COMMENTS You should use this call once to verify the existence of the BLiTTER prior to
attempting to change its configuration.

Buffoper()
LONG Buffoper(mode)
WORD mode;

Buffoper() sets/reads the state of the hardware sound system.

OPCODE 136 (0x88)

4.26 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETERS mode is a bit array which may be composed of all or none of the following flags
indicating the desired sound system state as follows:

Name Bit Mask Meaning

PLAY_ENABLE 0x01 Enable DMA Sound Playback. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

PLAY_REPEAT 0x02 Setting this flag will cause any sound currently playing or
started as a result of this call to be looped indefinitely
(until Buffoper(0) is used).

RECORD_ENABLE 0x04 Enable DMA Sound Recording. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

RECORD_REPEAT 0x08 Setting this flag during a record will cause the recording
to continue indefinitely within the currently set recording
buffer (as set by Buffptr())

Alternately, calling this function with a mode parameter of SND_INQUIRE (-1)
will return a bit mask indicating the current sound system state as shown above.

BINDING move.w mode,-(sp)
move.w #$88,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Buffoper() normally returns 0 for no error or non-zero otherwise (except in
inquire mode as indicated above.

COMMENTS The sound system uses a 32 bit FIFO. The FIFO is only guaranteed to be clear
when the record enable bit is clear. When transferring new data to the record
buffers, the record enable bit should be cleared to flush the FIFO.

SEE ALSO Setbuffer()

Buffptr()
LONG Buffptr(sptr)
SBUFPTR *sptr;

Buffptr() returns the current position of the playback and record pointers.

OPCODE 141 (0x8D)

Cursconf() – 4.27

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETER sptr is a pointer to a SBUFPTR structure which is filled in with the current
pointer values. SBUFPTR is defined as follows:

typedef struct
{

VOIDP playptr;
VOIDP recordptr;
VOIDP reserved1;
VOIDP reserved2;

} SBUFPTR;

BINDING pea sptr
move.w #$8d,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Buffptr() returns 0 if the operation was successful or non-zero otherwise.

SEE ALSO Setbuffer(), Buffoper()

Cursconf()
WORD Cursconf(mode, rate)
WORD mode, rate;

Cursconf() configures the VT-52 cursor.

OPCODE 21 (0x15)

AVAILABILITY All TOS versions.

PARAMETERS mode defines the operation as follows:

Name mode Meaning

CURS_HIDE 0 Hide cursor.

CURS_SHOW 1 Show cursor.

CURS_BLINK 2 Enable cursor blink.

CURS_NOBLINK 3 Disable cursor blink.

CURS_SETRATE 4 Set blink rate to rate.

CURS_GETRATE 5 Return current blink rate.

BINDING move.w rate,-(sp)
move.w mode,-(sp)
move.w #$15,-(sp)

4.28 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

trap #14
addq.l #6,sp

RETURN VALUE Cursconf() only returns a meaningful value under mode 5 in which it returns the
current blink rate.

COMMENTS The blink rate is specified in number of vertical blanks per blink.

Dbmsg()
VOID Dbmsg(rsrvd, msg_num, msg_arg)
WORD rsrvd, msg_num;
LONG msg_arg;

Dbmsg() allows special debugging messages to be sent to a resident debugger
application.

OPCODE 11 (0x0B)

AVAILABILITY The only debugger that currently supports this call is the Atari Debugger.

PARAMETERS rsrvd is currently reserved and should always be 5. msg_num is the message
number which you want to send to the debugging host. Values of 0x0000 to
0xEFFF are reserved for applications to define. Values of 0xF000 to 0xFFFF are
reserved for special debugging messages.

If msg_num is in the application defined range, it and the LONG contained in
msg_arg will be displayed by the debugger and the application will be halted.

If msg_num is between 0xF001 and 0xF0FF inclusive then msg_arg is interpreted
as a character pointer pointing to a string to be output by the debugger and
debugging to halt. The string length is determined by the low byte of msg_num. If
msg_num is DB_NULLSTRING (0xF000), the string will be output until a
NULL is reached.

If msg_num is DB_COMMAND (0xF100), msg_arg is interpreted as a character
pointer to a string containing a debugger command. The command format is
specific to the debugger which you are running.

A useful example of this format when running under the Atari debugger allows a
string to be output to the debugger without terminating debugging as shown in the
following example:

Dbmsg(5, DB_COMMAND, “echo ‘Debugging Message’;g”);

Devconnect() – 4.29

T H E A T A R I C O M P E N D I U M

BINDING move.l msg_arg,-(sp)
move.w msg_num,-(sp)
move.w #$5,-(sp)
move.w #$0B,-(sp)
trap #14
lea 10(sp),sp

COMMENTS The Atari Debugger only understands the value DB_COMMAND (0xF100) for
msg_num as of version 3.

Though it is normally harmless to run an application with embedded debugging
messages when no debugger is present in the system, distribution versions of
applications should have these instructions removed.

Devconnect()
LONG Devconnect(source, dest, clk, prescale, protocol)
WORD source, dest, clk, prescale, protocol;

Devconnect() attaches a source device in the sound system to one or multiple
destination devices through the use of the connection matrix.

OPCODE 139 (0x8B)

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETERS source indicates the source device to connect as follows:

Name source Meaning

DMAPLAY 0 DMA Playback

DSPXMIT 1 DSP Transmit

EXTINP 2 External Input

ADC 3 Microphone/Yamaha PSG

dest is a bit mask which is used to choose which destination devices to connect as
follows:

Name Mask Meaning

DMAREC 0x01 DMA Record

DSPRECV 0x02 DSP Receive

EXTOUT 0x04 External Out

DAC 0x08 DAC (Headphone or Internal
Speaker)

clk is the clock the source device will use as follows:

4.30 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name clk Meaning

CLK_25M 0 Internal 25.175 MHz clock

CLK_EXT 1 External clock

CLK_32M 2 Internal 32 MHz clock

prescale chooses the source clock prescaler. Sample rate is determined by the
formula:

rate
clockrate

prescale
=

+
/ 256

1

 Valid prescaler values for the internal CODEC using the 25.175 MHz clock are:

Name prescale Meaning/Sample Rate

CLK_COMPAT 0 TT030/STe compatiblity mode.
Use prescale value set with
Soundcmd() .

CLK_50K 1 49170 Hz

CLK_33K 2 32880 Hz

CLK_25K 3 24585 Hz

CLK_20K 4 19668 Hz

CLK_16K 5 16390 Hz

CLK_12K 7 12292 Hz

CLK_10K 9 9834 Hz

CLK_8K 11 8195 Hz

protocol sets the handshaking mode. A value of HANDSHAKE (0) enables
handshaking, NO_SHAKE (1) disables it. When transferring sound or video data
through the CODEC it is usually recommended that handshaking be disabled.
When incoming data must be 100% error free, however, handshaking should be
enabled.

BINDING move.w protocol,-(sp)
move.w prescale,-(sp)
move.w clk,-(sp)
move.w dest,-(sp)
move.w source,-(sp)
move.w #$8B,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Devconnect() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS Setting the prescaler to an invalid value will result in a mute condition.

DMAread() – 4.31

T H E A T A R I C O M P E N D I U M

SEE ALSO Soundcmd()

DMAread()
LONG DMAread(sector, count, buf, dev)
LONG sector;
WORD count;
VOIDP buf;
WORD dev;

DMAread() reads raw sectors from a ACSI or SCSI device.

OPCODE 42 (0x2A)

AVAILABILITY This call is available as of TOS version 2.00.

PARAMETERS sector specifies the sector number to begin reading at. count specifies the number
of sectors to read. buf is a pointer to the address where incoming data will be
stored. dev specifies the device to read from as follows:

dev Meaning

0-7 ACSI devices 0-7

8-15 SCSI devices 0-7

BINDING move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.l sector,-(sp)
move.w #$2A,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE DMAread() returns 0 if the operation was successful or a negative BIOS error
code otherwise.

CAVEATS SCSI devices will write data until the device exits its data transfer phase. Since
this call is not dependent on sector size, you should ensure that the buffer is large
enough to hold sectors from devices with large sectors (CD-ROM = 2K, for
example).

COMMENTS ACSI transfers must be done to normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the ‘_FRB’ cookie as an
intermediate transfer point while correctly managing the ‘_flock’ system variable.

SCSI transfers on the TT030 do not actually use DMA. Handshaking is used to

4.32 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

transfer bytes individually. This means that alternative RAM may be used. The
Falcon030 uses DMA for SCSI transfers making transfers to alternative RAM
illegal.

SEE ALSO DMAwrite(), Rwabs()

DMAwrite()
LONG DMAwrite(sector, count, buf, dev)
LONG sector;
WORD count;
VOIDP buf;
WORD dev;

DMAwrite() writes raw sectors to ACSI or SCSI devices.

OPCODE 43 (0x2B)

AVAILABILITY TOS versions >= 2.00

PARAMETERS sector is the starting sector number to write data to. count is the number of sectors
to write. buf defines the starting address of the data to write. dev is the device
number as specified in DMAread() .

BINDING move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.l sector,-(sp)
move.w #$2B,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE DMAwrite() returns 0 if successful or a negative BIOS error code otherwise.

COMMENTS ACSI transfers must be done from normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the ‘_FRB’ cookie as an
intermediate transfer point while correctly managing the ‘_flock’ system variable.

SCSI transfers do not actually use DMA. Handshaking is used to transfer bytes
individually.

SEE ALSO DMAread(), Rwabs()

Dosound() – 4.33

T H E A T A R I C O M P E N D I U M

Dosound()
VOID Dosound(cmdlist)
char *cmdlist;

Dosound() initializes and starts an interrupt driven sound playback routine using
the PSG.

OPCODE 32 (0x20)

AVAILABILITY All TOS versions.

PARAMETERS If cmdlist is positive, it will be interpreted as a pointer to a character array
containing a sequential list of commands required for the sound playback. Each
command is executed in order and has a meaning as follows:

Command Byte Meaning

0x00 - 0x0F Select a PSG register (the register number is the command byte). The
next byte in the list will be loaded into this register. See Appendix I for a
detailed listing of registers, musical frequencies, and sound durations.

0x80 Store the next byte in a temporary register for use by command 0x81.

0x81 Three bytes follow this command. The first is the PSG register to load with
the value in the temporary register (set with command 0x80). The second
is a signed value to add to the temporary register until the value in the third
byte is met.

0x82 If a 0 follows this command, this signals the end of processing, otherwise
the value indicates the number of 50Hz ticks to wait until the processing of
the next command.

Passing the value DS_INQUIRE (-1) for cmdlist will cause the pointer to the
current sound buffer to be returned or NULL if no sound is currently playing.

BINDING pea cmdlist
move.w #$20,-(sp)
trap #14
addq.l #6,sp

CAVEATS This routine is driven by interrupts. Do not use an array created on the stack to
store the command list that may go out of scope before the sound is complete.

This function will cause the OS to crash under MultiTOS versions prior to 1.08 if
every running application is not set to ‘Supervisor’ or ‘Global’ memory
protection.

Dosound(DS_INQUIRE) will cause the OS to crash under MultiTOS versions
1.08 and below.

4.34 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_Available()
VOID Dsp_Available(xavail, yavail)
LONG * xavail, *yavail;

Dsp_Available() returns the amount of free program space in X and Y DSP
memory.

OPCODE 106 (0x6A)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS Upon return, the longwords pointed to by xavail and yavail will contain the length
of memory (in bytes) available for DSP programs and subroutines.

BINDING pea yavail
pea xavail
move.w #$6A,-(sp)
trap #14
lea 10(sp),sp

SEE ALSO Dsp_Reserve()

Dsp_BlkBytes()
VOID Dsp_BlkBytes(data_in, size_in, data_out, size_out)
UBYTE * data_in;
LONG size_in;
UBYTE * data_out;
LONG size_out;

Dsp_BlkBytes() transfers a block of unsigned character data to the DSP and
returns the output from the running program or subroutine.

OPCODE 124 (0x7C)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to an unsigned character array which is transferred to the
DSP. size_in is the length (in bytes) of data to transfer.

data_out is a pointer to the unsigned character array to be filled in from the low
byte of the DSP’s transfer register. size_out is the length (in bytes) of the output
buffer array.

Dsp_BlkHandShake – 4.35

T H E A T A R I C O M P E N D I U M

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$7C,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Error sensitive data should be
transferred with Dsp_BlkHandShake().

COMMENTS Bytes are not sign extended before transfer. Also, due to the length of static
memory in the DSP, size_in and size_out should not exceed 65536.

SEE ALSO Dsp_BlkWords()

Dsp_BlkHandShake
VOID Dsp_BlkHandShake(data_in, size_in, data_out, size_out)
char *data_in;
LONG size_in;
char *data_out;
LONG size_out;

Dsp_BlkHandShake() handshakes a block of bytes to the DSP and returns the
output generated by the running subroutine or program.

OPCODE 97 (0x61)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to data being sent to the DSP. size_in specifies the number of
DSP words of data to be transferred. Dsp_GetWordSize() can be used to
determine the number of bytes that occur for a DSP word.

data_out is a pointer to the buffer to which processed data will be returned from
the DSP. size_out indicates the number of DSP words to transfer.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$61,-(sp)
trap #14
lea 18(sp),sp

4.36 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS Dsp_BlkHandshake() is identical to Dsp_DoBlock(), however, this function
handshakes each byte to prevent errors in sensitive data.

SEE ALSO Dsp_DoBlock()

Dsp_BlkUnpacked()
VOID Dsp_BlkUnpacked(data_in, size_in, data_out, size_out)
LONG *da ta_in;
LONG size_in;
LONG * data_out;
LONG size_out;

Dsp_BlkUnpacked() transfers data to the DSP from a longword array. Data
processed by the running subroutine or program is returned.

OPCODE 98 (0x62)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to an array of LONGs from which data is transferred to the
DSP. As many bytes are transferred from each LONG as there are bytes in a DSP
WORD. For example, if Dsp_GetWordSize() returns 3, the lower three bytes of
each LONG are transferred into each DSP WORD.

size_in represents the number of LONGs in the array to transfer. data_out is a
pointer to an array of LONGs size_out in length in which data sent from the DSP
is returned.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$62,-(sp)
trap #14
lea 18(sp),sp

CAVEATS This function only works with DSP’s which return 4 or less from
Dsp_GetWordSize(). In addition, no handshaking is performed with this call.
Data which is sensitive to errors should use Dsp_BlkHandShake().

SEE ALSO Dsp_DoBlock()

Dsp_BlkWords() – 4.37

T H E A T A R I C O M P E N D I U M

Dsp_BlkWords()
VOID Dsp_BlkWords(data_in, size_in, data_out, size_out)
WORD *data_in;
LONG size_in;
WORD *data_out;
LONG size_out;

Dsp_BlkWords() transfers an array of WORDs to the DSP and returns the output
generated by the running subroutine or program.

OPCODE 123 (0x7B)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to the WORD array to be transferred to the DSP. size_in is
the length (in WORDs) of data to transfer.

data_out is a pointer to the WORD array to be filled in during the data output
phase of the DSP from the middle and low bytes of the transfer register. size_out
is the length (in WORDs) of the buffer for the output array.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$7B,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Data which is sensitive to errors
should use Dsp_BlkHandShake().

COMMENTS WORDs are sign extended before transfer. Also, due to the length of static
memory in the DSP, size_in and size_out should not exceed 32768.

SEE ALSO Dsp_BlkBytes()

4.38 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_DoBlock()
VOID Dsp_DoBlock(data_in, size_in, data_out, size_out)
char *data_in;
LONG size_in;
char *data_out;
LONG size_out;

Dsp_DoBlock() transfers bytewise packed data to the DSP and returns the data
processed by the running subroutine or program.

OPCODE 96 (0x60)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a character array containing data to transfer to the DSP. size_in
specifies the number of DSP words to transfer. For example, if
Dsp_GetWordSize() returns 3, the first 3 bytes from data_in are stored in the
first DSP word, the next 3 bytes are stored in the next DSP word and so on.

data_out points to a character array where the output will be stored in a similar
manner. size_out represents the size of this array.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$60,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Data which is sensitive to errors
should use Dsp_BlkHandShake().

SEE ALSO Dsp_BlkHandShake()

Dsp_ExecBoot() – 4.39

T H E A T A R I C O M P E N D I U M

Dsp_ExecBoot()
VOID Dsp_ExecBoot(codeptr, codesize, ability)
char *codeptr;
LONG codesize;
WORD ability;

Dsp_ExecBoot() completely resets the DSP and loads a new bootstrap program
into the first 512 DSP words of memory.

OPCODE 110 (0x6E)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS codeptr points to the beginning of the DSP program data to be transferred.
codesize indicates the size (in DSP words) of program data to transfer. ability
indicates the bootstrapper’s unique ability code.

BINDING move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6E,-(sp)
trap #14
lea 12(sp),sp

COMMENTS This call is only designed for special development and testing purposes. Use of
this call takes over control of the DSP system.

This call is limited to transferring up to 512 DSP words of code.

SEE ALSO Dsp_LoadProg(), Dsp_ExecProg()

Dsp_ExecProg()
VOID Dsp_ExecProg(codeptr, codesize, ability)
char *codeptr;
LONG codesize;
WORD ability;

Dsp_ExecProg() transfers a DSP program stored in binary format in memory to
the DSP and executes it.

OPCODE 109 (0x6D)

4.40 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS codeptr points to the start of the binary program in memory. codesize indicates the
number of DSP words to transfer. ability indicates the program’s unique ability
code.

BINDING move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6D,-(sp)
trap #14
lea 12(sp),sp

COMMENTS codesize should not exceed the amount of memory reserved by the Dsp_Reserve()
call.

SEE ALSO Dsp_LoadProg(), Dsp_Reserve()

Dsp_FlushSubroutines()
VOID Dsp_FlushSubroutines(VOID)

Dsp_FlushSubroutines() removes all subroutines from the DSP.

OPCODE 115 (0x73)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$73,-(sp)
trap #14
addq.l #2,sp

COMMENTS This call should only be used when a program requires more memory than is
returned by Dsp_Available().

SEE ALSO Dsp_Available()

Dsp_GetProgAbility()
WORD Dsp_GetProgAbility(VOID)

Dsp_GetProgAbility() returns the current ability code for the program currently
residing in DSP memory.

OPCODE 114 (0x72)

Dsp_GetWordSize() – 4.41

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$72,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_GetProgAbility() returns the WORD ability code for the current program
loaded in the DSP.

COMMENTS If you know the defined ability code of the program you wish to use, you can use
this call to see if the program already exists on the DSP and avoid reloading it.

SEE ALSO Dsp_InqSubrAbility()

Dsp_GetWordSize()
WORD Dsp_GetWordSize(VOID)

Dsp_GetWordSize() returns the size of a DSP word in the installed Digital
Signal Processor.

OPCODE 103 (0x67)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$67,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_GetWordSize() returns the number of bytes per DSP word.

COMMENTS This value is useful with many DSP-related XBIOS calls to provide upward
compatibility as the DSP hardware is not guaranteed to remain the same.

Dsp_Hf0()
WORD Dsp_Hf0(flag)
WORD flag;

Dsp_Hf0() reads/writes to bit #3 of the HSR.

OPCODE 119 (0x77)

4.42 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS flag has three legal values as follows:

Name flag Meaning

HF_CLEAR 0 Clear bit #3 of the DSP’s HSR.

HF_SET 1 Set bit #3 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #3 of the DSP’s HSR.

BINDING move.w flag,-(sp)
move.w #$77,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE If flag is HF_INQUIRE (-1), Dsp_Hf0() returns the current state of bit #3 of the
HSR register.

SEE ALSO Dsp_Hf1()

Dsp_Hf1()
WORD Dsp_Hf1(flag)
WORD flag;

Dsp_Hf1() reads/writes to bit #4 of the HSR.

OPCODE 120 (0x78)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS flag has three legal values as follows:

Name flag Meaning

HF_CLEAR 0 Clear bit #4 of the DSP’s HSR.

HF_SET 1 Set bit #4 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #4 of the DSP’s HSR.

BINDING move.w flag,-(sp)
move.w #$78,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE If flag is HF_INQUIRE (-1), Dsp_Hf1() returns the current state of bit #4 of the
HSR register.

Dsp_Hf2() – 4.43

T H E A T A R I C O M P E N D I U M

SEE ALSO Dsp_Hf0()

Dsp_Hf2()
WORD Dsp_Hf2(VOID)

Dsp_Hf2() returns the current status of bit #3 of the DSP’s HCR.

OPCODE 121 (0x79)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$79,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hf2() returns the current setting of bit #3 of the HCR register (valid values
are 0 or 1).

SEE ALSO Dsp_Hf3()

Dsp_Hf3()
WORD Dsp_Hf3(VOID)

Dsp_Hf3() returns the current status of bit #4 of the DSP’s HCR.

OPCODE 122 (0x7A)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$7A,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hf3() returns the current setting of bit #4 of the HCR register (valid values
are 0 or 1).

SEE ALSO Dsp_Hf2()

4.44 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_HStat()
BYTE Dsp_Hstat(VOID)

Dsp_HStat() returns the value of the DSP’s ICR register.

OPCODE 125 (0x7D)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$7D,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hstat() returns an 8-bit value representing the current state of the DSP’s ICR
register as follows:

Name Bit Meaning

ICR_RXDF 0 ISR Receive data register full (RXDF)

ICR_TXDE 1 ISR Transmit data register empty (TXDE)

ICR_TRDY 2 ISR Transmitter ready (TRDY)

ICR_HF2 3 ISR Host flag 2 (HF2)

ICR_HF3 4 ISR Host flag 3 (HF3)

— 5 Reserved

ICR_DMA 6 ISR DMA Status (DMA)

ICR_HREQ 7 ISR Host Request (HREQ)

Dsp_InqSubrAbility()
WORD Dsp_InqSubrAbility(ability)
WORD ability;

Dsp_InqSubrAbility() determines if a subroutine with the specified ability code
exists in the DSP.

OPCODE 117 (0x75)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS ability is the ability code you wish to check.

BINDING move.w ability,-(sp)
move.w #$75,-(sp)

Dsp_InStream() – 4.45

T H E A T A R I C O M P E N D I U M

trap #14
addq.l #2,sp

RETURN VALUE Dsp_InqSubrAbility() returns a handle to the subroutine if found or 0 if not.

SEE ALSO Dsp_RunSubroutine()

Dsp_InStream()
VOID Dsp_InStream(data_in, block_size, num_blocks, blocks_done)
char *data_in;
LONG block_size;
LONG num_blocks;
LONG * blocks_done;

Dsp_InStream() passes data to the DSP via an interrupt handler.

OPCODE 99 (0x63)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to unsigned character data which should be transferred to the
DSP. block_size indicates the number of DSP WORDs that will be transferred at
each interrupt. num_blocks indicates the number of blocks to transfer.

The LONG pointed to by blocks_done will be constantly updated to let the
application know the progress of the transfer.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_size,-(sp)
pea data_in
move.w #$63,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. If the data you are transmitting is error
sensitive, use Dsp_BlkHandShake().

COMMENTS This call is suited for transferring small blocks while other blocks are being
prepared for transfer. For larger blocks, Dsp_DoBlock() would be more suitable.

SEE ALSO Dsp_BlkHandShake(), Dsp_DoBlock()

4.46 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_IOStream()
VOID Dsp_IOStream(data_in, data_out, block_insize, block_outsize, num_blocks, blocks_done)
char *data_in, *data_out;
LONG block_insize, block_outsize, num_blocks;
LONG * blocks_done;

Dsp_IOStream() uses two interrupt handlers to transmit and receive data from the
DSP.

OPCODE 101 (0x65)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to a buffer in which each output block is placed. data_out is a
pointer to a buffer used to receive each data block from the DSP.

block_insize and block_outsize represent the size of the blocks to send and
receive, respectively, in DSP WORDs. num_blocks is the total number of blocks
to transfer.

The LONG pointed at by blocks_done is constantly updated to indicate the
number of blocks actually transferred.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_outsize,-(sp)
move.l block_insize,-(sp)
pea data_out
pea data_in
move.w #$65,-(sp)
trap #14
lea 26(sp),sp

CAVEATS This call makes the assumption that the DSP will be ready to accept a new block
as input every time it finishes sending a block back to the host.

COMMENTS No handshaking is performed with this call. If your data is error-sensitive, you
should use Dsp_BlkHandShake().

SEE ALSO Dsp_InStream(), Dsp_OutStream()

Dsp_LoadProg() – 4.47

T H E A T A R I C O M P E N D I U M

Dsp_LoadProg()
WORD Dsp_LoadProg(file, ability, buf)
char *file;
WORD ability;
char *buf;

Dsp_LoadProg() loads a ‘.LOD’ file from disk, transmits it to the DSP, and
executes it.

OPCODE 108 (0x6C)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS file is a pointer to a NULL -terminated string containing a valid GEMDOS file
specification. ability is the unique ability code that will be assigned to this
program. buf should point to a temporary buffer where the DSP will place the
binary code it generates. The minimum size of the buffer is determined by the
following formula:

3 * (#program/data words + (3 * #blocks in program))

BINDING pea buf
move.w ability,-(sp)
pea file
move.w #$6C,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Dsp_LoadProg() returns a 0 is successful or -1 otherwise.

COMMENTS Before loading you should determine if a program already exists on the DSP with
your chosen ability with Dsp_GetProgAbility().

SEE ALSO Dsp_LoadSubroutine()

4.48 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_LoadSubroutine()
WORD Dsp_LoadSubroutine(ptr, size, ability)
char *ptr;
LONG size;
WORD ability;

Dsp_LoadSubroutine() transmits subroutine code to the DSP.

OPCODE 116 (0x74)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS ptr points to a memory buffer which contains DSP binary subroutine code. size is
the length of code to transfer (specified in DSP words). ability is the WORD
identifier for the unique ability of this subroutine.

BINDING move.w ability,-(sp)
move.l size,-(sp)
pea ptr
move.w #$74,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Dsp_LoadSubroutine() returns the handle assigned to the subroutine or 0 if an
error occurred.

COMMENTS DSP subroutines have many restrictions and you should see the previous
discussion of the DSP for more information.

SEE ALSO Dsp_RunSubroutine(), Dsp_InqSubrAbility()

Dsp_Lock()
WORD Dsp_Lock(VOID)

Dsp_Lock() locks the use of the DSP to the calling application.

OPCODE 104 (0x68)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$68,-(sp)
trap #14
addq.l #2,sp

Dsp_LodToBinary() – 4.49

T H E A T A R I C O M P E N D I U M

RETURN VALUE Dsp_Lock() returns a 0 if successful or -1 if the DSP has been locked by another
application.

COMMENTS Dsp_Lock() should be performed before each use of the DSP to prevent other
applications from modifying DSP memory or flushing subroutines. A
corresponding Dsp_Unlock() should be issued at the end of each usage. You
should limit the amount of time the DSP is locked so other applications may utilize
it.

SEE ALSO Dsp_Unlock()

Dsp_LodToBinary()
LONG Dsp_LodToBinary(file, codeptr)
char *file,*codeptr;

Dsp_LodToBinary() reads a ‘.LOD’ file and converts the ASCII data to binary
program code ready to be sent to the DSP via Dsp_ExecProg() or
Dsp_ExecBoot().

OPCODE 111 (0x6F)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS file is a character pointer to a null-terminated GEMDOS file specification.
codeptr should point to a large enough buffer to hold the resulting binary program
code.

BINDING pea codeptr
pea file
move.w #$6F,-(sp)
trap #14
lea 10(sp),sp

RETURN VALUE Dsp_LodToBinary() returns the size of the resulting program code in DSP words
or a negative error code.

SEE ALSO Dsp_ExecProg(), Dsp_LoadProg()

4.50 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_MultBlocks()
VOID Dsp_MultBlocks(numsend, numreceive, sendblks, receiveblks)
LONG numsend, numreceive;
DSPBLOCK *sendblks, *receiveblks;

Dsp_MultBlocks() transmit and receive multiple blocks of DSP data of varying
size.

OPCODE 127 (0x7F)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS numsend and numreceive indicate the number of blocks of DSP data to send and
receive respectively. sendblks and receiveblks are both pointers to arrays of type
DSPBLOCK which contain information for each block. DSPBLOCK is defined
as follows:

typedef struct
{
#define BLOCK_LONG 0
#define BLOCK_WORD 1
#define BLOCK_UBYTE 2

/* 0 = LONGs, 1 = WORDs, 2 = UBYTEs */
WORD blocktype;

/* Num elements in block */
LONG blocksize;

/* Start address of block */
VOIDP blockaddr;

} DSPBLOCK;

BINDING pea receiveblks
pea sendblks
move.l numreceive,-(sp)
move.l numsend,-(sp)
move.w #$7F,-(sp)
trap #14
lea 20(sp),sp

CAVEATS No handshaking is performed with this call. To transfer blocks with handshaking
use Dsp_BlkHandShake().

Dsp_OutStream() – 4.51

T H E A T A R I C O M P E N D I U M

Dsp_OutStream()
VOID Dsp_OutStream(data_out, block_size, num_blocks, blocks_done)
char *data_out;
LONG block_size;
LONG num_blocks;
LONG * blocks_done;

Dsp_OutStream() transfers data from the DSP to a user-specified buffer using
interrupts.

OPCODE 100 (0x64)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS This call transfers data from the DSP to the buffer pointed to by data_out via an
interrupt handler. block_size specifies the number of DSP WORDs to be
transferred and num_blocks specifies the number of blocks to transfer.

The LONG pointed to by blocks_done will be constantly updated by the interrupt
handler to indicate the number of blocks successfully transferred. The process is
complete when blocks_done is equal to num_blocks.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_size,-(sp)
pea data_out
move.w #$64,-(sp)
trap #1
lea 18(sp),sp

SEE ALSO Dsp_DoBlock(), Dsp_MultBlocks(), Dsp_InStream()

Dsp_RemoveInterrupts()
VOID Dsp_RemoveInterrupts(mask)
WORD mask;

Dsp_RemoveInterrupts() turns off the generation of DSP interrupts.

OPCODE 102 (0x66)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

4.52 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS mask is an WORD bit mask indicating which interrupts to turn off composed of
one or both of the following values:

Name Mask Meaning

RTS_OFF 0x01 Disable DSP Ready to Send Interrupts

RTR_OFF 0x02 Disable DSP Ready to Receive Interrupts

BINDING move.w mask,-(sp)
move.w #$66,-(sp)
trap #14
addq.l #4,sp

COMMENTS This call is used to terminate interrupts when an interrupt driven block transfer
function does not terminate as expected (this will occur when less than the
expected number of blocks is returned) and to shut off interrupts installed by
Dsp_SetVectors().

SEE ALSO Dsp_SetVectors()

Dsp_RequestUniqueAbility()
WORD Dsp_RequestUniqueAbility(VOID)

Dsp_RequestUniqueAbility() generates a random ability code that is currently not
in use.

OPCODE 113 (0x71)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$71,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_RequestUniqueAbility() returns a unique ability code to assign to a
subroutine or program.

COMMENTS Using this function allows you to call Dsp_InqSubrAbility() and
Dsp_GetProgAbility() to determine if the DSP code your application has already
loaded is still present (i.e. has not been flushed by another application).

SEE ALSO DspInqSubrAbility(), Dsp_GetProgAbility()

Dsp_Reserve() – 4.53

T H E A T A R I C O M P E N D I U M

Dsp_Reserve()
WORD Dsp_Reserve(xreserve, yreserve)
LONG xreserve, yreserve;

Dsp_Reserve() reserves DSP memory for program usage.

OPCODE 107 (0x6B)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS xreserve and yreserve specify the amount of memory (in DSP words) to reserve
for a DSP program in X and Y memory space respectively. xreserve and yreserve
must include all program/data space so that subroutines do not overwrite your
reserved area.

BINDING move.l yreserve,-(sp)
move.l xreserve,-(sp)
move.w #$6B,-(sp)
trap #14
lea 10(sp),sp

RETURN VALUE Dsp_Reserve() returns a 0 if the memory was reserved successfully or -1 if not
enough DSP memory was available.

COMMENTS If this call fails you should call Dsp_FlushSubroutines() and then retry it. If it
fails a second time, the DSP lacks enough memory space to run your program.

Dsp_RunSubroutine()
WORD Dsp_RunSubroutine(handle)
WORD handle;

Dsp_RunSubroutine() begins execution of the specified subroutine.

OPCODE 118 (0x76)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS handle is the WORD identifier of the DSP subroutine to engage.

BINDING move.w handle,-(sp)
move.w #$76,-(sp)
trap #14
addq.l #4,sp

4.54 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Dsp_RunSubroutine() returns a 0 if successful or a negative code indicating
failure.

SEE ALSO Dsp_LoadSubroutine()

Dsp_SetVectors()
VOID Dsp_SetVectors(receiver, transmitter)
VOID (* receiver)();
LONG (* transmitter)();

Dsp_SetVectors() sets the location of application interrupt handlers that are
called when the DSP is either ready to send or receive data.

OPCODE 126 (0x7E)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS receiver is the address of an interrupt handler which is called when the DSP is
ready to send a DSP word of data or NULLFUNC (VOID (*)() 0L) if you do not
wish to set this interrupt.

Likewise, transmitter is a pointer to an interrupt handler which is called when the
DSP is ready to receive a DSP word of data or NULLFUNC if you do not wish to
install a transmitter interrupt.

Any function installed to handle transmitter interrupts should return a LONG
which has one of the following values:

Name
transmitter

Return Value Meaning
DSPSEND_NOTHING 0x00000000 Do not send any data to the DSP.

DSPSEND_ZERO 0xFF000000 Transmit a DSP word of 0 to the DSP.

— Any other Transmit the low 24 bits to the DSP.

BINDING move.l #transmitter,-(sp)
move.l #receiver,-(sp)
move.w #$7E,-(sp)
trap #14
lea 10(sp),sp

COMMENTS Use Dsp_RemoveInterrupts() to turn off interrupts set with this call.

SEE ALSO Dsp_RemoveInterrupts()

Dsp_TriggerHC() – 4.55

T H E A T A R I C O M P E N D I U M

Dsp_TriggerHC()
VOID Dsp_TriggerHC(vector);
WORD vector;

Dsp_TriggerHC() causes a host command set aside for DSP programs to execute.

OPCODE 112 (0x70)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS vector specifies the vector to execute.

BINDING move.w vector,-(sp)
move.w #$70,-(sp)
trap #14
addq.l #4,sp

CAVEATS Currently vectors 0x13 and 0x14 are the only vectors available for this purpose.
All other vectors are overwritten by the system on program load and are used by
the system and subroutines.

Dsp_Unlock()
VOID Dsp_Unlock(VOID)

Dsp_Unlock() unlocks the sound system from use by a process which locked it
previously using Dsp_Lock().

OPCODE 105 (0x69)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$69,-(sp)
trap #14
addq.l #2,sp

SEE ALSO Dsp_Lock()

4.56 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsptristate()
LONG Dsptristate(dspxmit, dsprec)
WORD dspxmit, dsprec;

Dsptristate() connects or disconnects the DSP from the connection matrix.

OPCODE 137 (0x89)

AVAILABILITY Available if ‘_SND’ cookie has bits 3 and 4 set.

PARAMETERS dpsxmit and dsprec specify whether data being transmitted and/or recorded into
the DSP passes through the connection matrix. A value of DSP_TRISTATE (0)
indicates a ‘tristate’ condition where data is not fed through the matrix. A value of
DSP_ENABLE (1) enables the use of the connection matrix.

BINDING move.w dsprec,-(sp)
move.w dspxmit,-(sp)
move.w #$89,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Dsptristate() returns 0 if no error occurred or non-zero otherwise.

COMMENTS This call is used in conjunction with Devconnect() to link the DSP to the internal
sound system.

SEE ALSO Devconnect()

EgetPalette()
VOID EgetPalette(start, count, paldata)
WORD start, count;
WORD *paldata;

EgetPalette() copies the current TT030 color palette data into a specified buffer..

OPCODE 85 (0x55)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS start gives the index (0-255) of the first color register to copy data into. count
specifies the total number of registers to copy. paldata is a pointer to an array
where the TT030 palette data will be stored. Each WORD will be formatted as

EgetShift() – 4.57

T H E A T A R I C O M P E N D I U M

follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Reserved Red Green Blue

BINDING pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #$55,-(sp)
trap #14
lea 10(sp),sp

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vq_color() be used in most instances.

COMMENTS Unlike Setpalette() this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

SEE ALSO Esetpalette(), vq_color()

EgetShift()
WORD EgetShift(VOID)

EgetShift() returns the current mode of the video shifter.

OPCODE 81 (0x51)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

BINDING move.w #$51,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE EgetShift() returns a WORD bit array which is divided as follows:

Mask Name Bit(s) Meaning

ES_BANK 0–3 These bits determine the current color bank being used by the TT
(in all modes with less than 256 colors).

The macro ColorBank() as defined below will extract the current
bank code.

#define ColorBank(x) ((x) & ES_BANK)
— 4–7 Unused

4.58 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

ES_MODE 8–10 These bits determine the current mode of the TT video shifter as
follows:

Name Value
ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

The current shifter mode code can be extracted with the following
macro:

#define ScreenMode(x) ((x) & ES_MODE)
— 11 Unused

ES_GRAY 12 This bit determines if the TT video shifter is currently in grayscale
mode. The following macro can be used to extract this information:

#define IsGrayMode(x) ((x) & ES_GRAY)
— 13–14 Unused

ES_SMEAR 15 If this bit is set, the TT video shifter is currently in smear mode. The
following macro can be used to extract this information:

#define IsSmearMode(x) ((x) & ES_SMEAR)

SEE ALSO EsetGray(), EsetShift(), EsetSmear(), EsetBank()

EsetBank()
WORD EsetBank(bank)
WORD bank;

EsetBank() chooses which of 16 banks of color registers is currently active.

OPCODE 82 (0x52)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS bank specifies the index of the color bank to activate. A value of ESB_INQUIRE
(-1) does not change anything but still returns the current bank.

BINDING move.w bank,-(sp)
move.w #$52,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetBank() returns the index of the old blank.

EsetColor() – 4.59

T H E A T A R I C O M P E N D I U M

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift()

EsetColor()
WORD EsetColor(idx, color)
WORD idx, color;

EsetColor() sets an individual color in the TT030’s palette.

OPCODE 83 (0x53)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS idx specifies the color index to modify (0-255). color is a TT030 format color
WORD bit array divided as follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Reserved Red Green Blue

If color is EC_INQUIRE (-1) then the call does not change the register but still
returns it value.

BINDING move.w color,-(sp)
move.w idx,-(sp)
move.w #$53,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE EsetColor() returns the old value of the color register.

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vs_color() be used instead for compatibility.

COMMENTS Unlike Setpalette() this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

SEE ALSO EsetPalette(), vs_color()

4.60 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

EsetGray()
WORD EsetGray(mode)
WORD mode;

EsetGray() reads/modifies the TT030’s video shifter gray mode bit.

OPCODE 86 (0x56)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value
of 2.

PARAMETERS mode is defined as follows:

Name mode Meaning

ESG_INQUIRE -1 Return the gray bit of the video shifter.

ESG_COLOR 0 Set the video shifter to interpret the lower 16 bits of a
palette entry as a TT030 color value (RGB 0-15).

ESG_GRAY 1 Set the video shifter to interpret the lower 8 bits of a
palette entry as a TT030 gray value (0-255)

BINDING move.w mode,-(sp)
move.w #$56,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetGray() returns the previous value of the video shifter’s gray bit.

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift()

EsetPalette()
VOID EsetPalette(start, count, paldata)
WORD start,count;
WORD *paldata;

EsetPalette() copies TT030 color WORDs from the specified buffer into the
TT030 Color Lookup Table (CLUT).

OPCODE 84 (0x54)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

EsetShift() – 4.61

T H E A T A R I C O M P E N D I U M

PARAMETERS start specifies the index of the starting color register to copy color data to. count
indicates the number of palette WORDs to copy. paldata is a pointer to an array
of palette WORDs to copy.

BINDING pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #$54,-(sp)
trap #14
lea 10(sp),sp

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vs_color() be used instead for compatibility.

COMMENTS For the format of the color WORDs, see EgetPalette().

SEE ALSO EgetPalette(), vq_color()

EsetShift()
WORD EsetShift(mode)
WORD mode;

EsetShift() reads/modifies the TT030 video shifter.

OPCODE 80 (0x50)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS mode is a WORD bit array which defines the new setting of the video shifter as
follows:

Name Bit(s) Meaning

— 0–3 These bits determine the current color bank being used by the TT
(in all modes with less than 256 colors).

— 4–7 Unused

— 8–10 These bits determine the current mode of the TT video shifter as
follows:

Name Bit Mask
ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

4.62 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

— 11 Unused

ES_GRAY 12 Setting this bit places the TT video shifter in grayscale mode.

— 13–14 Unused

ES_SMEAR 15 Setting this bit places the TT video shifter in smearsmear mode.

BINDING move.w mode,-(sp)
move.w #$50,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetShift() returns the old mode setting of the video shifter.

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift(), EsetGray(), EsetSmear(), EsetBank()

EsetSmear()
WORD EsetSmear(mode)
WORD mode;

EsetSmear() reads/modifies the current state of the video shifter’s smear mode
bit.

OPCODE 87 (0x57)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS mode specifies the action of this call as follows:

Name mode Meaning

ESM_INQUIRE -1 Return the smear bit of the video shifter.

ESM_NORMAL 0 Set the video shifter to process video data normally.

ESM_SMEAR 1 Set the video shifter to repeat the color of the last
displayed pixel each time a 0x0000 is read from video
memory.

BINDING move.w mode,-(sp)
move.w #$57,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetSmear() returns the prior setting of the video shifter’s smear mode bit.

SEE ALSO Egetshift(), EsetShift()

Flopfmt() – 4.63

T H E A T A R I C O M P E N D I U M

Flopfmt()
WORD Flopfmt(buf, skew, dev, spt, track, side, intlv, magic, virgin)
VOIDP buf;
WORD *skew;
WORD dev, spt, track, side, intlv;
LONG magic;
WORD virgin;

Flopfmt() formats a specified track on a floppy disk.

OPCODE 10 (0x0A)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer to a word-aligned buffer large enough to hold one disk track which
is used to build a copy of each sector to write. skew should be NULL for non-
interleaved sectors or point to a WORD array containing spt entries which
specifies the sector interleave order.

dev specifies which floppy drive to format (‘A:’ = FLOP_DRIVEA (0), ‘B:’ =
FLOP_DRIVEB (1)). spt indicates the number of sectors to format. track
indicates which track to format.

side indicates the side to format. intlv should be FLOP_NOSKEW (1) for
consecutive sectors or FLOP_SKEW (-1) to interleave the sectors based on the
array pointed to by skew.

magic is a fixed magic number which must be FLOP_MAGIC (0x87654321).
virgin is the value to assign to uninitialized sector data (should be
FLOP_VIRGIN (0xE5E5)).

BINDING move.w virgin,-(sp)
move.l magic,-(sp)
move.w intlv,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w spt,-(sp)
move.w dev,-(sp)
pea skew
pea buf
move.w #$0A,-(sp)
trap #14
lea 26(sp),sp

RETURN VALUE Flopfmt() returns 0 if the track was formatted successfully or non-zero otherwise.

4.64 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Also, upon exit, buf will be filled in with a WORD array of sectors that failed
formatting terminated by an entry of 0. If no errors occurred then the first WORD
of buf will be 0.

COMMENTS The steps required to a format a floppy disk are as follows:

1. Call Flopfmt() to format the disk as desired.
2. Call Protobt() to create a prototype boot sector in memory.
3. Call Flopwr() to write the prototype boot sector to track 0, side 0, sector 1.

Interleaved sector formatting is only possible as of TOS 1.2. skew should be set to
NULL and intlv should be set to FLOP_NOSKEW under TOS 1.0.

Specifying an intlv value of FLOP_SKEW and a skew array equalling { 1, 2, 3, 4,
5, 6, 7, 8, 9 } is the same as specifying an intlv value of FLOP_NOSKEW. To
accomplish a 9 sector 2:1 interleave you would use a skew array which looked
like: { 1, 6, 2, 7, 3, 8, 4, 9, 5 }.

The ‘_FDC’ cookie (if present) contains specific information regarding the
installed floppy drives. The lower three bytes of the cookie value contain a three-
letter code indicating the manufacturer of the drive (Atari is 0x415443 ‘ATC’).
The high byte determines the capabilities of the highest density floppy drive
currently installed as follows:

Name Value Meaning

FLOPPY_DSDD 0 Standard Density (720K)

FLOPPY_DSHD 1 High Density (1.44MB)

FLOPPY_DSED 2 Extra High Density (2.88MB)

To format a high density diskette, multiple the spt parameter by 2. To format a
extra-high density diskette, multiply the spt parameter by 4.

This call forces a ‘media changed’ state on the device which will be returned on
the next Mediach() or Rwabs() call.

SEE ALSO Floprate(), Floprd(), Flopwr()

Floprate()
WORD Floprate(dev, rate)
WORD dev, rate;

Floprate() sets the seek rate of the specified floppy drive.

Floprd() – 4.65

T H E A T A R I C O M P E N D I U M

OPCODE 41 (0x29)

AVAILABILITY Available on all TOS versions except 1.00.

PARAMETERS dev indicates the floppy drive whose seek rate you wish to modify (‘A:’ =
FLOP_DRIVEA (0), ‘B:’ = FLOP_DRIVEB (1)). rate specifies the seek rate as
follows:

Name rate Meaning

FRATE_6 0 Set seek rate to 6ms

FRATE_12 1 Set seek rate to 12ms

FRATE_2 2 Set seek rate to 2ms

FRATE_3 3 Set seek rate to 3ms

A rate value of FRATE_INQUIRE (-1) will inquire the current seek rate without
modifying it.

BINDING move.w rate,-(sp)
move.w dev,-(sp)
move.w #$29,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Floprate() returns the prior seek rate for the specified drive.

COMMENTS TOS version 1.00 can have its seek rates set by setting the system variable
(_seekrate (WORD *)0x440) to the desired value (as in rate). Note that you can
only set the seek rate for both drives in this manner.

Floprd()
WORD Floprd(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Floprd() reads sectors from a floppy disk.

OPCODE 8 (0x08)

AVAILABILITY All TOS versions.

PARAMETERS buf points to a word-aligned buffer where the data to be read will be stored. rsrvd
is currently unused and should be 0. dev specifies the floppy drive to read from

4.66 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

(‘A:’ = FLOP_DRIVEA (0), ‘B:’ = FLOP_DRIVEB (1)). The function reads
count physical sectors starting at sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$08,-(sp)
trap #14
lea 20(sp),sp

RETURN VALUE Floprd() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS This function reads sectors in physical order (not taking interleave into account).
Use Rwabs() to read logical sectors.

SEE ALSO Flopwr(), Flopfmt(), Flopver(), Rwabs()

Flopver()
WORD Flopver(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Flopver() verifies data on a floppy disk with data in memory.

OPCODE 19 (0x13)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer to a word-aligned buffer to compare the sector against. rsrvd is
unused and should be 0. dev specifies the drive to verify (‘A:’ = FLOP_DRIVEA
(0), ‘B:’ = FLOP_DRIVEB (1)). This function verifies count sectors starting at
sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$13,-(sp)
trap #14
lea 20(sp),sp

Flopwr() – 4.67

T H E A T A R I C O M P E N D I U M

RETURN VALUE Flopver() returns 0 if all sectors were successfully verified or a non-zero value
otherwise.

CAVEATS This function only verifies sectors in physical order.

COMMENTS As with Flopfmt() , upon the return of the function, buf is filled in with a WORD
array containing a list of any sectors which failed. The array is terminated with a
NULL .

SEE ALSO Flopwr(), Flopfmt()

Flopwr()
WORD Flopwr(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Flopwr() writes sectors to the floppy drive.

OPCODE 9 (0x09)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer containing data to write. rsrvd is currently unused and should be
set to 0. dev specifies the floppy drive to write to (‘A:’ = 0,’B:’ = 1). This
function writes count sectors starting at sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$09,-(sp)
trap #14
lea 20(sp),sp

RETURN VALUE Flopwr() returns 0 if the sectors were successfully written or non-zero otherwise.

CAVEATS This function writes sectors in physical order only (ignoring interleave). Use
Rwabs() to write sectors in logical order.

COMMENTS If this call is used to write to track 0, sector 1, side 0, the device will enter a

4.68 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

‘media might have changed’ state indicated upon the next Rwabs() or Mediach()
call.

SEE ALSO Floprd(), Flopfmt(), Flopver(),Rwabs()

Getrez()
WORD Getrez(VOID)

Getrez() returns a machine-dependent code representing the current screen
mode/ratio.

OPCODE 4 (0x04)

AVAILABILITY All TOS versions.

BINDING move.w #$04,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Getrez() returns a value representing the current video display mode. To find the
value you will receive back based on current Atari manufactured video hardware,
refer to the following chart:

Colors:
Screen
Dimension: 2 4 16 256

True
Color

320x200 X X 0 0 X

320x240 X 0 0 0 0

320x480 X 7 7 7 7

640x200 1 X X X X

640x400 2 X X X X

640x480 2 2 2† 2 2

1280x960 6 X X X X

† This value varies. TT030 Medium resolution returns a value of 4, however, the
Falcon returns a value of 2.

CAVEATS This call is extremely machine-dependent. Dependence on this call will make your
program incompatible with third-party video boards and future hardware. Use the
values returned by v_opnvwk() to determine screen attributes.

COMMENTS Use of this call in preparing to call v_opnvwk() is acceptable and must be done to
specify the correct fonts to load from GDOS.

Gettime() – 4.69

T H E A T A R I C O M P E N D I U M

SEE ALSO VsetMode(), Egetshift(), Setscreen()

Gettime()
LONG Gettime(VOID)

Gettime() returns the current IKBD time.

OPCODE 23 (0x17)

AVAILABILITY All TOS versions.

BINDING move.w #$17,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Gettime() returns a LONG bit array packed with the current IKBD time as
follows:

Bits Meaning

0-4 Seconds/2 (0-29)

5-10 Minute (0-59)

11-15 Hour (0-23)

16-20 Day (1-31)

21-24 Month (1-12)

25-31 Year-1980 (0-127)

The return value can be represented in a C structure as follows:

typedef struct
{

unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

} BIOS_TIME;

SEE ALSO Settime(), Tgettime(), Tgetdate()

4.70 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Giaccess()
WORD Giaccess(data, register)
WORD data, register;

Giaccess() reads/sets the registers of the FM sound chip and Port A/B
peripherals.

OPCODE 28 (0x1C)

AVAILABILITY All TOS versions.

PARAMETERS The lower eight bits of data are written to the register selected by register if the
value for register is OR’ed with 0x80 (high bit set). If this bit is not set, data is
ignored and the value of the register is returned. register selects the register to
read/write to as follows:

Name register Meaning

PSG_APITCHLOW
PSG_BPITCHHIGH

0
1

Set the pitch of the PSG’s channel A to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_BPITCHLOW
PSG_BPITCHHIGH

2
3

Set the pitch of the PSG’s channel B to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_CPITCHLOW
PSG_CPITCHHIGH

2
3

Set the pitch of the PSG’s channel C to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_NOISEPITCH 6 The lower five bits of this register set the pitch of white
noise. The lower the value, the higher the pitch.

PSG_MODE 7 This register contains an eight bit map which
determines various aspects of sound generation.
Setting each bit on causes the following actions:

Name Bit Mask Meaning
PSG_ENABLEA 0x01 Chnl A tone enable
PSG_ENABLEB 0x02 Chnl B tone enable
PSG_ENABLEC 0x04 Chnl C tone enable
PSG_NOISEA 0x08 Chnl A white noise on
PSG_NOISEB 0x10 Chnl B white noise on
PSG_NOISEC 0x20 Chnl C white noise on
PSG_PRTAOUT 0x40 Port A: 0 = input

1 = output
PSG_PRTBOUT 0x80 Port B: 0 - input

1 = output

Gpio() – 4.71

T H E A T A R I C O M P E N D I U M

PSG_AVOLUME 8 This register controls the volume of channel A. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_BVOLUME 9 This register controls the volume of channel B. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_CVOLUME 10 This register controls the volume of channel C. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_FREQLOW
PSG_FREQHIGH

11
12

Register 11 contains the low byte and register 12
contains the high byte of the frequency of the
waveform specified in register 13. This value may
range from 0 to 65535.

PSG_ENVELOPE 13 The lower four bits of the register contain a value
which defines the envelope wavefrom of the PSG. The
best definition of values is obtained through
experimentation.

PSG_PORTA 14 This register accesses Port A of the Yamaha PSG. It
is recommended that the functions Ongibit() and
Offgibit() be used to access this register.

PSG_PORTB 15 This register accesses Port B of the Yamaha PSG.
This register is currently assigned to the data in/out
line of the Centronics Parallel port.

BINDING move.w register,-(sp)
move.w data,-(sp)
move.w #$1C,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Giaccess() returns the value of the register in the lower eight bits of the word if
data was OR’ed with 0x80.

Gpio()
LONG Gpio(mode, data)
WORD mode, data;

Gpio() reads/writes data over the general purpose pins on the DSP connector.

OPCODE 138 (0x8A)

AVAILABILITY Available if ‘_SND’ cookie has bit 3 set.

4.72 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS mode specifies the meaning of data and the return value as follows:

Name mode Meaning

GPIO_INQUIRE 0 Return the old value.

GPIO_READ 1 Read the three general purpose pins and return their
state in the lower three bits of the returned value. data
is ignored.

GPIO_WRITE 2 Write the lower three bits of data to the corresponding
DSP pins. The return value is 0.

BINDING move.w data,-(sp)
move.w mode,-(sp)
move.w #$8A,-(sp)
trap #14
addq.l #6,sp

Ikbdws()
VOID Ikbdws(len, buf)
WORD len;
CHAR * buf;

Ikbdws() writes the contents of a buffer to the intelligent keyboard controller.

OPCODE 25 (0x19)

AVAILABILITY All TOS versions.

PARAMETERS This function writes len + 1 characters from buffer buf to the IKBD.

BINDING pea buf
move.w len,-(sp)
move.w #$19,-(sp)
trap #14
addq.l #8,sp

Initmous() – 4.73

T H E A T A R I C O M P E N D I U M

Initmous()
VOID Initmous(mode, param, vec)
WORD mode;
VOIDP param;
VOID (* vec)();

Initmous() determines the method of handling IKBD mouse packets from the
system.

OPCODE 0 (0x00)

AVAILABILITY All TOS versions.

PARAMETERS mode indicates a IKBD reporting mode and defines the meaning of the other
parameters as listed below. hand points to a mouse packet handler which is called
when each mouse packet is sent. Register A0 contains the mouse packet address
when called.

Name mode Meaning

IM_DISABLE 0 Disable mouse reporting.

IM_RELATIVE 1 Enable relative mouse reporting mode. Packets report
offsets from the previous mouse position. In this mode,
param is a pointer to a structure as follows:

struct param
{

BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;

}

topmode is IM_YBOT (0) to indicate that Y=0 means
bottom of the screen. A topmode value of IM_YTOP (1)
indicates that Y=0 means the top of the screen.

buttons is a bit array which affect the way mouse clicks are
handled. A value of IM_KEYS (4) causes mouse buttons to
generate keycodes rather than mouse packets. A value of
IM_PACKETS (3) causes the absolute mouse position to
be reported on each button press.

xparam and yparam specify the number of mouse X/Y
increments between position report packets.

This mode is the default mode of the AES and VDI.

4.74 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

IM_ABSOLUTE 2 Enable absolute mouse reporting mode. Packets report
actual screen positions. In this mode, param is a pointer to
a structure as follows:

struct param
{

BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;
WORD xmax;
WORD ymax;
WORD xinitial;
WORD yinitial;

}

topmode, buttons, xparam, and yparam are the same as
for mode 2.

xmax and ymax specify the maximum X and Y positions
the mouse should be allowed to move to. xinital and yinitial
specify the mouse’s initial location.

— 3 Unused

IM_KEYCODE 4 Enable mouse keycode mode. Keyboard codes for mouse
movements are sent rather than actual mouse packets.

param is handled the same as in mode 1.

BINDING pea hand
pea param
move.w mode,-(sp)
clr.w -(sp)
trap #14
lea 12(sp),sp

CAVEATS Changing the mouse packet handler to anything but relative mode will cause the
AES and VDI to stop receiving mouse input.

SEE ALSO Kbdvbase()

Iorec()
IOREC *Iorec(dev)
WORD dev;

Iorec() returns the address in memory of system data structures relating to the
buffering of input data.

OPCODE 14 (0x0E)

AVAILABILITY All TOS versions.

Jdisint() – 4.75

T H E A T A R I C O M P E N D I U M

PARAMETERS dev specifies the device to return information about as follows:

Name dev Meaning

IO_SERIAL 0 Currently mapped serial device
(see Bconmap())

IO_KEYBOARD 1 Keyboard

IO_MIDI 2 MIDI

BINDING move.w dev,-(sp)
move.w #$0E,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Iorec() returns the address of an IOREC array with either one element (Keyboard
or MIDI) or two elements (RS-232 - 1st = input, 2nd = output). The IOREC
structure is defined as follows:

typedef struct
{

/* start of buffer */
char *ibuf;

/* size of buffer */
WORD ibufsize;

/* head index mark of buffer */
WORD ibufhd;

/* tail index mark of buffer */
WORD ibuftl;

/* low-water mark of buffer */
WORD ibuflow;

/* high-water mark of buffer */
WORD ibufhi;

} IOREC;

SEE ALSO Bconmap()

Jdisint()
VOID Jdisint(intno)
WORD intno;

Jdisint() disables an MFP interrupt.

OPCODE 26 (0x1A)

4.76 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All TOS versions.

PARAMETERS intno specifies the interrupt to disable (see Mfpint() for a list).

BINDING move.w intno,-(sp)
move.w #$1A,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Jenabint(), Mfpint()

Jenabint()
VOID Jenabint(intno)
WORD intno;

Jenabint() enables an MFP interrupt.

OPCODE 27 (0x1B)

AVAILABILITY All TOS versions.

PARAMETERS intno specifies the interrupt to enable (see Mfpint() for a list).

BINDING move.w intno,-(sp)
move.w #$1B,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Jdsint(), Mfpint()

Kbdvbase()
KBDVECS *Kbdvbase(VOID)

Kbdvbase() returns a pointer to a system structure containing a ‘jump’ table to
system vector handlers.

OPCODE 34 (0x22)

AVAILABILITY All TOS versions.

BINDING move.w #$22,-(sp)
trap #14

Kbrate() – 4.77

T H E A T A R I C O M P E N D I U M

addq.l #2,sp

RETURN VALUE Kbdvbase() returns a pointer to a system structure KBDVECS which is defined as
follows:

typedef struct
{

VOID (*midivec)(UBYTE data); /* MIDI Input */
VOID (*vkbderr)(UBYTE data); /* IKBD Error */
VOID (*vmiderr)(UBYTE data); /* MIDI Error */
VOID (*statvec)(char *buf); /* IKBD Status */
VOID (*mousevec)(char *buf); /* IKBD Mouse */
VOID (*clockvec)(char *buf); /* IKBD Clock */
VOID (*joyvec)(char *buf); /* IKBD Joystick */
VOID (*midisys)(VOID); /* Main MIDI Vector */
VOID (*ikbdsys)(VOID); /* Main IKBD Vector */
char ikbdstate; /* See below */

} KBDVECS;

midivec is called with the received data byte in d0. If an overflow error occurred
on either ACIA, vkbderr or vmiderr will be called, as appropriate by midisys or
ikbdsys with the contents of the ACIA data register in d0.

statvec, mousevec, clockvec, and joyvec all are called with the address of the
packet in register A0.

midisys and ikbdsys are called by the MFP ACIA interrupt handler when a
character is ready to be read from either the midi or keyboard ports.

ikbdstate is set to the number of bytes remaining to be read by the ikbdsys handler
from a multiple-byte status packet.

COMMENTS If you intercept any of these routines you should either JMP through the old handler
or RTS.

SEE ALSO Initmous()

Kbrate()
WORD Kbrate(delay, rate)
WORD delay, rate;

Kbrate() reads/modifies the keyboard repeat/delay rate.

OPCODE 35 (0x23)

AVAILABILITY All TOS versions.

4.78 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS delay specifies the amount of time (in 50Hz ticks) before a key begins repeating.
rate indicates the amount of time between repeats (in 50Hz ticks). A parameter of
KB_INQUIRE (-1) for either of these values leaves the value unchanged.

BINDING move.w rate,-(sp)
move.w delay,-(sp)
move.w #$23,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Kbrate() returns a WORD with the low byte being the old value for rate and the
high byte being the old value for delay.

Keytbl()
KEYTAB *Keytbl(normal, shift, caps)
char *unshift, *shift, *caps;

Keytbl() reads/modifies the internal keyboard mapping tables.

OPCODE 16 (0x10)

AVAILABILITY All TOS versions.

PARAMETERS normal is a pointer to an array of 128 CHARs which can be indexed by a
keyboard scancode to return the correct ASCII value for a given unshifted key.
shift and caps point to similar array except their values are only utilized when
SHIFT and CAPS-LOCK respectively are used. Passing a value of
KT_NOCHANGE ((char *)-1) will leave the table unchanged.

BINDING pea caps
pea shift
pea normal
move.w #$10,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Keytbl() returns a pointer to a KEYTAB structure defined as follows:

typedef struct
{

char *unshift;
char *shift;
char *caps;

} KEYTAB;

The entries in this table each point to the current keyboard lookup table in their
category.

Locksnd() – 4.79

T H E A T A R I C O M P E N D I U M

Entries are indexed with a keyboard scancode to obtain the ASCII value of a key.
A value of 0 indicates that no ASCII equivalent exists.

SEE ALSO Bioskeys()

Locksnd()
LONG Locksnd(VOID)

Locksnd() prevents other applications from simultaneously attempting to use the
sound system.

OPCODE 128 (0x80)

AVAILABILITY Available if the ‘_SND’ cookie has bit 2 set.

BINDING move.w #$80,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Locksnd() returns 1 if the sound system was successfully locked or
SNDLOCKED (-129) if the sound system was already locked.

COMMENTS This call should be used prior to any usage of the 16-bit DMA sound system.

SEE ALSO Unlocksnd()

Logbase()
VOIDP Logbase(VOID)

Logbase() returns a pointer to the base of the logical screen.

OPCODE 3 (0x03)

AVAILABILITY All TOS versions.

BINDING move.w #$03,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Logbase() returns a pointer to the base of the logical screen.

4.80 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS The logical screen should not be confused with the physical screen. The logical
screen is the memory area where the VDI does any drawing. The physical screen
is the memory area where the video shifter gets its data from. Normally they are
the same; however, keeping the addresses separate facilitates screen flipping.

SEE ALSO Physbase()

Metainit()
VOID Metainit(metainfo)
METAINFO * metainfo;

Metainit() returns information regarding the current version and installed drives
of MetaDOS.

OPCODE 48 (0x30)

AVAILABILITY To test for the availability of MetaDOS the following steps must be taken:

1. Fill the METAINFO structure with all zeros.
2. Call Metainit() .
3. If metainfo.version is NULL , MetaDOS is not installed.

PARAMETERS metainfo is a pointer to a METAINFO structure which is filled in by the call.
METAINFO is defined as:

typedef struct
{

/* Bitmap of drives (Bit 0 = A, 1 = B, etc... */
ULONG drivemap;

/* String containing name and version */
char *version;

/* Currently unused */
LONG reserved[2];

} METAINFO;

BINDING pea metainfo
move.w #$30,-(sp)
trap #14
addq.l #6,sp

Mfpint()

Mfpint() – 4.81

T H E A T A R I C O M P E N D I U M

VOID Mfpint(intno, vector)
WORD intno;
VOID (* vector)();

Mfpint() defines an interrupt handler for an MFP interrupt.

OPCODE 13 (0x0D)

AVAILABILITY All TOS versions.

PARAMETERS intno is an index to a vector to replace with vector as follows:

Name intno Vector

MFP_PARALLEL 0 Parallel port

MFP_DCD 1 RS-232 Data Carrier Detect

MFP_CTS 2 RS-232 Clear To Send

MFP_BITBLT 3 BitBlt Complete

MFP_TIMERD or
MFP_BAUDRATE

4 Timer D (RS-232 baud rate generator)

MFP_200HZ 5 Timer C (200Hz system clock)

MFP_ACIA 6 Keyboard/MIDI vector

MFP_DISK 7 Floppy/Hard disk vector

MFP_TIMERB or
MFP_HBLANK

8 Timer B (Horizontal blank)

MFP_TERR 9 RS-232 transmit error

MFP_TBE 10 RS-232 transmit buffer empty

MFP_RERR 11 RS-232 receive error

MFP_RBF 12 RS-232 receive buffer full.

MFP_TIMERA or
MFP_DMASOUND

13 Timer A (DMA sound)

MFP_RING 14 RS-232 ring indicator

MFP_MONODETECT 15 Mono monitor detect/DMA sound complete

BINDING pea vector
move.w intno,-(sp)
move.w #$0D,-(sp)
trap #14
addq.l #8,sp

CAVEATS This call does not return the address of the old handler.

The only RS-232 vector that may be set on the Falcon030 with this function is the
ring indicator.

COMMENTS Newly installed interrupts must be enabled with Jenabint().

4.82 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Jenabint(), Jdisint()

Midiws()
VOID Midiws(count, buf)
WORD count;
char *buf;

Midiws() outputs a data buffer to the MIDI port.

OPCODE 12 (0x0C)

AVAILABILITY All TOS versions.

PARAMETERS count + 1 characters are written from the buffer pointed to by buf.

BINDING pea buf
move.w count,-(sp)
move.w #$0C,-(sp)
trap #14
addq.l #8,sp

NVMaccess()
WORD NVMaccess(op, start, count, buffer)
WORD op, start, count;
char *buffer;

NVMaccess() reads/modifies data in non-volatile (battery backed-up) memory.

OPCODE 46 (0x2E)

AVAILABILITY This function’s availability is variable. If it returns 0x2E (its opcode) when
called, the function is non-existent and the operation was not carried out.

PARAMETERS op indicates the operation to perform as follows:

Name op Meaning

NVM_READ 0 Read count bytes of data starting at offset start and place the data
in buffer.

NVM_WRITE 1 Write count bytes of data from buffer starting at offset start.

NVM_RESET 2 Resets and clears all data in non-volatile memory.

Offgibit() – 4.83

T H E A T A R I C O M P E N D I U M

BINDING pea buffer
move.w count,-(sp)
move.w start,-(sp)
move.w op,-(sp)
move.w #$2E,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE NVMaccess() returns 0 if the operation succeeded or a negative error code
otherwise.

CAVEATS All of the locations are reserved for use by Atari and none are currently
documented.

COMMENTS Currently there is a total of 50 bytes in non-volatile RAM.

Offgibit()
VOID Offgibit(mask)
WORD mask;

Offgibit() clears individual bits of the sound chip’s Port A.

OPCODE 29 (0x1D)

AVAILABILITY All TOS versions.

PARAMETERS mask is a bit mask arranged as shown below. For each of the lower eight bits in
mask set to 0, that bit will be reset. Other bits (set as 1) will remain unchanged.

Name Mask Meaning

GI_FLOPPYSIDE 0x01 Floppy side select

GI_FLOPPYA 0x02 Floppy A select

GI_FLOPPYB 0x04 Floppy B select

GI_RTS 0x08 RS-232 Request To Send

GI_DTR 0x10 RS-232 Data Terminal Ready

GI_STROBE 0x20 Centronics strobe

GI_GPO 0x40 General purpose output (On a Falcon030, this bit
controls the state of the internal speaker)

GI_SCCPORT 0x80 On a Mega STe or TT030, calling Ongibit(0x80)
will cause SCC channel A to control the Serial 2
port rather than the LAN. To select the LAN, use
Offgibit(0x7F).

BINDING move.w mask,-(sp)

4.84 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

move.w #$1D,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Giaccess(), Ongibit()

Ongibit()
VOID Ongibit(mask)
WORD mask;

Ongibit() sets individual bits of the sound chip’s assigned Port A.

OPCODE 30 (0x1E)

AVAILABILITY All TOS versions.

PARAMETERS mask is a bit mask arranged as defined in Offgibit() . For each of the lower eight
bits in mask set to 1, that bit will be set. Other bits (set as 0) will remain
unchanged.

BINDING move.w mask,-(sp)
move.w #$1E,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Giaccess(), Offgibit()

Physbase()
VOIDP Physbase(VOID)

Physbase() returns the address of the physical base of screen memory.

OPCODE 2 (0x02)

AVAILABILITY All TOS versions.

BINDING move.w #$02,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Physbase() returns the physical base address of the screen.

COMMENTS The physical base address is the memory area where the video shifter reads its

Protobt() – 4.85

T H E A T A R I C O M P E N D I U M

data. The logical address is the memory area where the VDI draws. These are
normally the same but are addressed individually to enable screen flipping.

SEE ALSO Logbase()

Protobt()
VOID Protobt(buf, serial, type, execflag)
VOIDP buf;
LONG serial;
WORD type, execflag;

Protobt() creates a prototype floppy boot sector in memory for writing to a floppy
drive.

OPCODE 18 (0x12)

AVAILABILITY All TOS versions.

PARAMETERS buf is a 512 byte long buffer where the prototyped buffer will be written. If you
are creating an executable boot sector, the memory buffer should contain the code
you require. serial can be any of the following values:

Name serial Meaning

SERIAL_NOCHANGE -1 Don’t change the serial number already in
memory.

SERIAL_RANDOM >0x01000000 Use a random number for the serial number

— any other positive
number

Set the serial number to serial.

type defines the type of disk to prototype as follows:

Name type Meaning

DISK_NOCHANGE -1 Don’t change disk type.

DISK_SSSD 0 40 Track, Single-Sided (180K)

DISK_DSSD 1 40 Track, Double-Sided (360K)

DISK_SSDD 2 80 Track, Single-Sided (360K)

DISK_DSDD 3 80 Track, Double-Sided (720K)

DISK_DSHD 4 High Density (1.44MB)

DISK_DSED 5 Extra-High Density (2.88MB)

execflag specifies the executable status of the boot sector as follows:

4.86 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name execflag Meaning

EXEC_NOCHANGE -1 Don’t alter executable status

EXEC_NO 0 Disk is not executable

EXEC_YES 1 Disk is executable

BINDING move.w execflag,-(sp)
move.w type,-(sp)
move.l serial,-(sp)
pea buf
move.w #$12,-(sp)
trap #14
lea 14(sp),sp

CAVEATS type values of DISK_DSHD and DISK_DSED are only available when the high
byte of the ‘_FDC’ cookie has a value of FLOPPY_DSHD (1) and
FLOPPY_DSED (2) respectively.

COMMENTS To create an MS-DOS compatible disk you must set the first three bytes of the
prototyped boot sector to 0xE9, 0x00, and 0x4E.

SEE ALSO Flopfmt(), Flopwr()

Prtblk()
WORD Prtblk(blk)
PRTBLK * blk;

Prtblk() accesses the built-in bitmap/text printing code.

OPCODE 36 (0x24)

AVAILABILITY All TOS versions.

PARAMETERS blk is a PRTBLK pointer containing information about the bitmap or text to print.
PRTBLK is defined as follows:

typedef struct
{

VOIDP blkptr; /* pointer to screen scanline */
UWORD offset; /* bit offset of first column */
UWORD width; /* width of bitmap in bits */
UWORD height; /* height of bitmap in scanlines */
UWORD left; /* left print margin (in pixels) */
UWORD right; /* right print margin (in pixels) */
UWORD srcres; /* same as Getrez() */
UWORD destres; /* 0 = draft, 1 = final */
UWORD *colpal; /* color palette pointer */
/*

Puntaes() – 4.87

T H E A T A R I C O M P E N D I U M

 * 0 = B/W Atari
 * 1 = Color Atari
 * 2 = Daisy Wheel
 * 3 = B/W Epson
 */
UWORD type;
/* 0 = parallel, 1 = serial */
UWORD port;
/* halftone mask pointer or NULL to use default */
char *masks;

} PRTBLK;

BINDING pea prtblk
move.w #$24,-(sp)
trap #14
addq.l #6,sp

CAVEATS This call is extremely device dependent. v_bit_image() with GDOS installed
should be used instead. Only ST compatible screen resolution bitmaps may be
printed with this utility function.

COMMENTS When printing text, blkptr should point to the text string, width should be the length
of the text string, height should be 0, and masks should be NULL .

In graphic print mode, masks can be NULL to use the default halftone masks.

The system variable _prt_cnt (WORD *)0x4EE should be set to 1 to disable the
ALT-HELP key before calling this function. It should be restored to a value of -1
when done.

SEE ALSO Scrdump(), SetPrt()

Puntaes()
VOID Puntaes(VOID)

Puntaes() discards the AES (if memory-resident) and restarts the system.

OPCODE 39 (0x27)

AVAILABILITY All TOS versions.

BINDING move.w #$27,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE If successful, this function will not return control to the caller.

4.88 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

CAVEATS Puntaes() is only valid with disk-loaded AES’s.

COMMENTS Puntaes() discards the AES by freeing any memory it allocated, resetting the
system variable os_magic (this variable should contain the magic number
0x87654321, however if reset, the AES will not initialize), and rebooting the
system.

Random()
LONG Random(VOID)

Random() returns a 24 bit random number.

OPCODE 17 (0x11)

AVAILABILITY All TOS versions.

BINDING move.w #$11,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Random() returns a 24-bit random value in the lower three bytes of the returned
LONG .

CAVEATS The algorithm used provides an exact 50% occurrence of bit 0.

Rsconf()
ULONG Rsconf(speed, flow, ucr, rsr, tsr, scr)
WORD speed, flow, ucr, rsr, tsr, scr;

Rsconf() reads/modifies the configuration of the serial device currently mapped to
BIOS device #1 (GEMDOS ‘aux:’).

OPCODE 15 (0x0F)

AVAILABILITY All TOS versions.

PARAMETERS speed sets the serial device speed as follows:

Name speed Baud Rate Name speed Baud Rate

BAUD_19200 0 19200 BAUD_600 8 600

BAUD_9600 1 9600 BAUD_300 9 300

Rsconf() – 4.89

T H E A T A R I C O M P E N D I U M

BAUD_4800 2 4800 BAUD_200 10 200

BAUD_3600 3 3600 BAUD_150 11 150

BAUD_2400 4 2400 BAUD_134 12 134

BAUD_2000 5 2000 BAUD_110 13 110

BAUD_1800 6 1800 BAUD_75 14 75

BAUD_1200 7 1200 BAUD_50 15 50

If speed is set to BAUD_INQUIRE (-2), the last baud rate set will be returned.

flow selects the flow control method as follows:

Name flow Meaning

FLOW_NONE 0 No flow control

FLOW_SOFT 1 XON/XOFF flow control (CTRL-S/CTRL-Q)

FLOW_HARD 2 RTS/CTS flow control (hardware)

FLOW_BOTH 3 Both methods of flow control

ucr, rsr, and tsr are each status bit arrays governing the serial devices. Each
parameter uses only the lower eight bits of the WORD. They are defined as
follows:

Mask ucr rsr and tsr

0x01 Unused Receiver enable:
RS_RECVENABLE

0x02 Enable odd parity
RS_ODDPARITY (0x02)
RS_EVENPARITY (0x00)

Sync strip
RS_SYNCSTRIP

0x04 Parity enable
RS_PARITYENABLE

Match busy
RS_MATCHBUSY

0x08 Bits 3-4 of the ucr collectively define the
start and stop bit configuration as follows:

00 = No Start or Stop bits
RS_NOSTOP (0x00)
01 = 1 Start bit, 1 Stop bit
RS_1STOP (0x08)
10 = 1 Start bit, 1½ Stop bits
RS_15STOP (0x10)
11 = 1 Start bit, 2 Stop bits
RS_2STOP (0x18)

Break detect
RS_BRKDETECT

0x10 See above. Frame error
RS_FRAMEERR

0x20 Bits 5 and 6 together define the number of
bits per word as follows:

00 = 8 bits
RS_8BITS (0x00)
01 = 7 bits
RS_7BITS (0x20)

Parity error
RS_PARITYERR

4.90 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

10 = 6 bits
RS_6BITS (0x40)
11 = 5 bits
RS_5BITS (0x60)

0x40 See above. Overrun error
RS_OVERRUNERR

0x80 CLK/16
RS_CLK16

Buffer full
RS_BUFFULL

scr sets the synchronous character register in which the low byte is used as the
character to search for in an underrun error condition.

If a RS_INQUIRE (-1) is used for either ucr, rsr, tsr, or scr, then that parameter
is read and the register is unmodified.

BINDING move.w scr,-(sp)
move.w tsr,-(sp)
move.w rsr,-(sp)
move.w ucr,-(sp)
move.w flow,-(sp)
move.w speed,-(sp)
move.w #$0F,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Rsconf() returns the last set baud rate if speed is set to RS_LASTBAUD (-2).
Otherwise, it returns the old settings in a packed LONG with ucr being in the high
byte, down to scr being in the low byte.

COMMENTS Bits in the ucr, rsr, tsr, and scr should be set atomically. To correctly change a
value, read the old value, mask it as appropriate and then write it back.

Baud rates higher than 19,200 bps available with SCC-based serial devices may
be set by using the appropriate Fcntl() call under MiNT or by directly
programming the SCC chip.

CAVEATS The baud rate inquiry mode (speed = RS_LASTBAUD) does not work at all on
TOS versions less than 1.04. TOS version 1.04 requires the patch program
TOS14FX2.PRG (available from Atari Corp.) to allow this mode to function. All
other TOS versions support the function normally.

SEE ALSO Bconmap()

Scrdmp() – 4.91

T H E A T A R I C O M P E N D I U M

Scrdmp()
VOID Scrdmp(VOID)

Scrdmp() starts the built-in hardware screen dump routine.

OPCODE 20 (0x14)

AVAILABILITY All TOS versions.

BINDING move.w #$14,-(sp)
trap #14
addq.l #2,sp

CAVEATS Scrdmp() only dumps ST compatible screen resolutions.

COMMENTS This routine is extremely device-dependent. You should use the VDI instead.

SEE ALSO Prtblk(), v_hardcopy()

Setbuffer()
LONG Setbuffer(mode, begaddr, endaddr)
WORD mode;
VOIDP begaddr;
VOIDP endaddr;

Setbuffer() sets the starting and ending addresses of the internal play and record
buffers.

OPCODE 131 (0x83)

AVAILABILITY Available when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode specifies which registers are to be set. A mode value of PLAY (0) sets the
play registers, a value of RECORD (1) sets the record registers. begaddr
specifies the starting location of the buffer. endaddr specifies the first invalid
location for sound data past begaddr.

BINDING pea endaddr
pea begaddr
move.w mode,-(sp)
move.w #$83,-(sp)
trap #14
lea 12(sp),sp

4.92 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Setbuffer() returns a 0 if successful or non-zero otherwise.

SEE ALSO Buffoper()

Setcolor()
WORD Setcolor(idx, new)
WORD idx, new;

Setcolor() sets a ST/TT030 color register.

OPCODE 7 (0x07)

AVAILABILITY All TOS versions.

PARAMETERS idx specifies the color register to modify (0-16 on an ST, 0-255 on a STe or
TT030). new is a bit array specifying the new color as follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Unused Red Green Blue

Each color value has its bits packed in an unusual manner to stay compatible
between machines. Bits are ordered 0, 3, 2, 1 with 0 being the least signifigant bit.
If new is COL_INQUIRE (-1) then the old color is returned.

BINDING move.w new,-(sp)
move.w idx,-(sp)
move.w #$06,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Setcolor() returns the old value of the color register.

CAVEATS This call is extremely device-dependent. vs_color() should be used instead.

COMMENTS The top bit of each color nibble is unused on the original ST machines.

SEE ALSO VsetRGB(), EsetColor(), Setpalette()

Setinterrupt() – 4.93

T H E A T A R I C O M P E N D I U M

Setinterrupt()
LONG Setinterrupt(mode, cause)
WORD mode, cause;

Setinterrupt() defines the conditions under which an interrupt is generated by the
sound system

OPCODE 135 (0x87)

AVAILABILITY Available when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode configures interrupts to occur when the end of a buffer is reached. A value of
INT_TIMERA (0) for mode sets Timer A, a value of INT_I7 (1) sets the MFP i7
interrupt. cause defines the conditions for the interrupt as follows:

Name cause Meaning

INT_DISABLE 0 Disable interrupt

INT_PLAY 1 Interrupt at end of play buffer

INT_RECORD 2 Interrupt at end of record buffer

INT_BOTH 3 Interrupt at end of both buffers

BINDING move.w cause,-(sp)
move.w mode,-(sp)
move.w #$87,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Setinterrupt() returns 0 if no error occurred or non-zero otherwise.

COMMENTS If either buffer is in repeat mode, these interrupts can be used to double-buffer
sounds.

SEE ALSO Buffoper()

Setmode()
LONG Setmode(mode)
WORD mode;

Setmode() sets the mode of operation for the play and record registers.

OPCODE 132 (0x84)

4.94 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode defines the playback and record mode as follows:

Name mode Meaning

MODE_STEREO8 0 8-bit Stereo Mode

MODE_STEREO16 1 16-bit Stereo Mode

MODE_MONO 2 8-bit Mono Mode

BINDING move.w mode,-(sp)
move.w #$84,sp
trap #14
addq.l #4,sp

RETURN VALUE Setmode() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS Recording only works in 16-bit stereo mode.

SEE ALSO Buffoper()

Setmontracks()
LONG Setmontracks(track)
WORD track;

Setmontracks() defines which playback track is audible through the internal
speaker.

OPCODE 134 (0x86)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS track specifies the playback track to monitor (0-3).

BINDING move.w track,-(sp)
move.w #$86,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Setmontracks() returns a 0 if the operation was successful or non-zero otherwise.

Setpalette() – 4.95

T H E A T A R I C O M P E N D I U M

Setpalette()
VOID Setpalette(palette)
WORD *palette;

Setpalette() loads the ST color lookup table with a new palette.

OPCODE 6 (0x06)

AVAILABILITY All TOS versions.

PARAMETERS palette is a pointer to a WORD array containing 16 color encoded WORDs as
defined in Setcolor().

BINDING pea palette
move.w #$06,-(sp)
trap #14
addq.l #6,sp

COMMENTS The actual palette data is not copied from the specified array until the next vertical
blank interrupt. For this reason, this call should be followed by Vsync() to be sure
the array memory is not modified or reallocated prior to the transfer.

SEE ALSO Setcolor(), EsetPalette(), VsetRGB(), vs_color()

Setprt()
WORD Setprt(new)
WORD new;

Setprt() sets the OS’s current printer configuration bits.

OPCODE 33 (0x21)

AVAILABILITY All TOS versions.

PARAMETERS new is a WORD bit array defined as follows:

Mask When clear When Set

0x01 Dot Matrix
PRT_DOTMATRIX

Daisy Wheel
PRT_DAISY

0x02 Monochrome
PRT_MONO

Color
PRT_COLOR

0x04 Atari Printer Epson Printer

4.96 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PRT_ATARI PRT_EPSON
0x08 Draft Mode

PRT_DRAFT
Final Mode
PRT_FINAL

0x10 Parallel Port
PRT_PARALLEL

Serial Port
PRT_SERIAL

0x20 Continuous Feed
PRT_CONTINUOUS

Single Sheet Feed
PRT_SINGLE

– Unused Unused

If new is set to PRT_INQUIRE (-1) Setprt() will return the current configuration
without modifying the current setup.

BINDING move.w new,-(sp)
move.w #$33,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Setprt() returns the prior configuration.

CAVEATS This call only affects the internal screen dump code which only operates on ST
compatible resolutions.

SEE ALSO Prtblk(), Scrdmp(), v_hardcopy()

Setscreen()
VOID Setscreen(log, phys, mode)
VOIDP log, phys;
WORD mode;

Setscreen() changes the base addresses and mode of the current screen.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions.

PARAMETERS log is the address for the new logical screen base. phys is the new address for the
physical screen base. mode defines the screen mode to switch to (same as
Getrez()). If any of these three parameters is set to SCR_NOCHANGE (-1) then
that value will be left unchanged.

BINDING move.w mode,-(sp)
pea phys
pea log
move.w #$5,-(sp)
trap #14
lea 12(sp),sp

Settime() – 4.97

T H E A T A R I C O M P E N D I U M

CAVEATS Changing screen modes with this call does not reinitialize the AES. The VDI and
VT52 emulator are, however, correctly reinitialized. The AES should not be used
after changing screen mode with this call until the old screen mode is restored.

COMMENTS The Atari ST and Mega ST required that its physical screen memory be on a 256
byte boundary. All other Atari computers only require a WORD boundary.

To access the unique video modes of the Falcon030 the call VsetScreen() (which
is actually an alternate binding of this call with the same opcode) should be used
in place of this call.

SEE ALSO VsetMode(), VsetScreen(), EsetShift()

Settime()
VOID Settime(time)
LONG time;

Settime() sets a new IKBD date and time.

OPCODE 22 (0x16)

AVAILABILITY All TOS versions.

PARAMETERS time is a LONG bit array defined as follows:

Bits Meaning

0-4 Seconds / 2 (0-29)

5-10 Minute (0-59)

11-15 Hour (0-23)

16-20 Day (1-31)

21-24 Month (1-12)

25-31 Year - 1980 (0-127)

The value can be represented in a C structure as follows:

typedef struct
{

unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

4.98 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

} BIOS_TIME;

BINDING move.l time,-(sp)
move.w #$16,-(sp)
trap #14
addq.l #6,sp

COMMENTS As of TOS 1.02, this function also updates the GEMDOS time.

SEE ALSO Gettime(), Tsettime(), Tsetdate()

Settracks()
LONG Settracks(playtracks, rectracks)
WORD playtracks, rectracks;

Setttracks() sets the number of recording and playback tracks.

OPCODE 133 (0x85)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS playtracks specifies the number of playback tracks (0-3) and rectracks specifies
the number of recording tracks.

BINDING move.w rectracks,-(sp)
move.w playtracks,-(sp)
move.w #$85,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Settracks() returns 0 if the operation was successful or non-zero otherwise.

COMMENTS The tracks specified are stereo tracks. When in 8-bit Mono mode, two samples are
read at a time.

SEE ALSO Setmode(), Setmontracks()

Sndstatus() – 4.99

T H E A T A R I C O M P E N D I U M

Sndstatus()
LONG Sndstatus(reset)
WORD reset;

Sndstatus() can be used to test the error condition of the sound system and to
completely reset it.

OPCODE 140 (0x8C)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS reset is a flag indicating whether the sound system should be reset. A value of
SND_RESET (1) will reset the sound system.

BINDING move.w reset,-(sp)
move.w #$8C,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Sndstatus() returns a LONG bit array indicating the current error status of the
sound system defined as follows:

Bit(s) Meaning

0-3 These bits form a value indicating the error condition of the
sound system as follows:

Name Mask Meaning
SND_ERROR 0xF Use to mask error code

Name Value Meaning
SND_OK 0 No Error
SND_BADCONTROL 1 Invalid Control Field
SND_BADSYC 2 Invalid Sync Format
SND_BADCLOCK 3 Clock out of range

4 If this bit is set, left channel clipping has occurred. Use the
mask SND_LEFTCLIP (0x10) to isolate this bit.

5 If this bit is set, right channel clipping has occurred. Use the
mask SND_RIGHTCLIP (0x20) to isolate this bit.

6-31 Unused.

COMMENTS On reset, the following things happen:

• DSP is tristated
• Gain and attentuation are zeroed
• Old matrix connections are reset
• ADDERIN is disabled

4.100 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

• Mode is set to 8-Bit Stereo
• Play and record tracks are set to 0
• Monitor track is set to 0
• Interrupts are disabled
• Buffer operation is disabled

Soundcmd()
LONG Soundcmd(mode, data)
WORD mode, data;

Soundcmd() sets various configuration parameters in the sound system.

OPCODE 130 (0x82)

AVAILABILITY Available only when bit #2 of ‘_SND’ cookie is set.

PARAMETERS mode specifies how data is interpreted as follows:

Name mode Meaning

LTATTEN 0 Set the left attenuation (increasing attentuation is the same as
decreasing volume). data is a bit mask as follows:

XXXX XXXX LLLL XXXX

‘L’ specifies a valid value between 0 and 15 used to set the
attenuation of the left channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

RATTEN 1 Set the right attentuation. data is a bit mask as follows:

XXXX XXXX RRRR XXXX

‘R’ specifies a valid value between 0 and 15 used to set the
attenuation of the right channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

LTGAIN 2 Set the left channel gain (boost the input to the ADC). data is a
bit mask as follows:

XXXX XXXX LLLL XXXX

‘L’ specifies a valid value between 0 and 15 used to set the
gain of the left channel in 1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

Soundcmd() – 4.101

T H E A T A R I C O M P E N D I U M

RTGAIN 3 Set the right channel gain (boost the input to the ADC). data is
a bit mask as follows:

XXXX XXXX RRRR XXXX

‘R’ specifies a valid value between 0 and 15 used to set the
gain of the right channel in 1.5Db increments. The bits
represented by ‘X’ are reserved and should be 0.

ADDERIN 4 Set the 16 bit ADDER to receive its input from the source(s)
specified in data. data is a bit mask where each bit indicates a
possible souce. Bit 0 represents the ADC (ADDR_ADC). Bit 1
represents the connection matrix (ADDR_MATRIX). Setting
either or both of these bits determines the source of the
ADDER.

ADCINPUT 5 Set the inputs of the left and right channels of the ADC. data is
a bit mask with bit 0 being the right channel: LEFT_MIC (0x00)
or LEFT_PSG (0x02) and bit 1 being the left channel:
RIGHT_MIC (0x00) or RIGHT_PSG (0x01).

Setting a bit causes that channel to receive its input from the
Yamaha PSG. Clearing a bit causes that channel to receive its
input from the microphone.

SETPRESCALE 6 This mode is only valid when Devconnect() is used to set the
prescaler to TT030 compatibility mode. In that case, data
represents the TT030 compatible prescale value as follows:

Name Value Meaning
CCLK_6K 0 Divide by 1280 (6.25 MHz)
CCLK_12K 1 Divide by 640 (12.5 Mhz)
CCLK_25K 2 Divide by 320 (25 MHz)
CCLK_50K 3 Divide by 160 (50 MHz)

Setting data to SND_INQUIRE (-1) with any command will cause that
command’s current value to be returned and the parameter unchanged.

BINDING move.w data,-(sp)
move.w mode,-(sp)
move.w #$82,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Soundcmd() returns the prior value of the specified command if data is
SND_INQUIRE (-1).

Using the SETPRESCALE mode to set a frequency of 6.25 MHz (CCLK_6K)
will cause the sound system to mute on a Falcon030 as it does not support this
sample rate.

CAVEATS On current systems, a bug exists that causes a mode value of LTGAIN to set the
gain for both channels.

SEE ALSO Devconnect()

4.102 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Ssbrk()
VOIDP Ssbrk(len)
WORD len;

Ssbrk() is designed to reserve memory at the top of RAM prior to the initialization
of GEMDOS.

OPCODE 1 (0x01)

AVAILABILITY All TOS versions.

PARAMETERS len is a WORD value specifying the number of bytes to reserve at the top of
RAM.

BINDING move.w len,-(sp)
move.w #$01,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Ssbrk() returns a pointer to the allocated block.

CAVEATS Ssbrk() was only used on early development systems. Currently the function is
unimplemented and does not do anything.

Supexec()
LONG Supexec(func)
LONG (* func)(VOID);

Supexec() executes a user-defined function in supervisor mode.

OPCODE 38 (0x26)

AVAILABILITY All TOS versions.

PARAMETERS func is the address to a function which will be called in supervisor mode.

BINDING pea func
move.w #$26,-(sp)
trap #14
addq.l #6,sp

Unlocksnd() – 4.103

T H E A T A R I C O M P E N D I U M

RETURN VALUE Supexec() returns the LONG value returned by the user function.

CAVEATS Care must be taken when calling the operating system in supervisor mode. The
AES must not be called while in supervisor mode.

SEE ALSO Super()

Unlocksnd()
LONG Unlocksnd(VOID)

Unlocksnd() unlocks the sound system so that other applications may utilize it.

OPCODE 129 (0x81)

AVAILABILITY All TOS versions.

BINDING move.w #$81,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Unlocksnd() returns a 0 if the sound system was successfully unlocked or
SNDNOTLOCK (-128) if the sound system wasn’t locked prior to the call.

SEE ALSO Locksnd()

VgetMonitor()
WORD VgetMonitor(VOID)

VgetMonitor() returns a value which determines the kind of monitor currently
being used.

OPCODE 89 (0x59)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

BINDING move.w #$59,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE VgetMonitor() returns a value describing the monitor currently connected to the
system as follows:

4.104 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name Return Value Monitor Type

MON_MONO 0 ST monochrome monitor

MON_COLOR 1 ST color monitor

MON_VGA 2 VGA monitor

MON_TV 3 Television

VgetRGB()
VOID VgetRGB(index, count, rgb)
WORD index, count;
RGB *rgb;

VgetRGB() returns palette information as 24-bit RGB data.

OPCODE 94 (0x5E)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS index specifies the beginning color index in the palette to read data from. count
specifies the number of palette entries to read. rgb is a pointer to an array of
RGBs which will be filled in by the functions. RGB is defined as:

typedef struct
{

BYTE reserved;
BYTE red;
BYTE green;
BYTE blue;

} RGB;

BINDING pea rgb
move.w count,-(sp)
move.w index,-(sp)
move.w #$5E,-(sp)
trap #14
lea 10(sp),sp

COMMENTS VgetRGB() is device-dependent in nature and it is therefore recommended that
vq_color() be used instead.

SEE ALSO VsetRGB()

VgetSize() – 4.105

T H E A T A R I C O M P E N D I U M

VgetSize()
LONG VgetSize(mode)
WORD mode;

VgetSize() returns the size of a screen mode in bytes.

OPCODE 91 (0x5B)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS mode is a modecode as defined in VsetMode().

BINDING move.w mode,-(sp)
move.w #$5B,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE VgetSize() returns the size in bytes of a screen mode of type mode.

VsetMask()
VOID VsetMask(ormask, andmask, overlay)
LONG ormask, andmask;
WORD overlay;

VsetMask() provides access to ‘overlay’ mode.

OPCODE 146 (0x92)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS When the VDI processes a vs_color() call. It converts the desired color into a
hardware palette register. In 16-bit true-color mode, this is a WORD formatted as
follows:

RRRR RGGG GGXB BBBB

The ‘X’ is the system overlay bit. In 24-bit true color a LONG is formatted as
follows:

XXXXXXXX RRRRRRRR GGGGGGGG BBBBBBBB

VsetMask() sets a logical OR and AND mask which are applied to this register

4.106 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

before being stored. The default system value for ormask is 0x00000000 and the
default value for andmask is 0xFFFFFFFF.

overlay should be OVERLAY_ON (1) to enable overlay mode or
OVERLAY_OFF (0) to disable it.

BINDING move.w #overlay,-(sp)
move.l #andmask,-(sp)
move.l #ormask,-(sp)
move.w #$92,-(sp)
trap #14
add.l #12,sp

COMMENTS To make colors defined by the VDI transparent in 16-bit true color with overlay
mode enabled, use an andmask value of 0xFFFFFFDF and an ormask value of
0x00000000. To make colors visible, use an andmask of 0x00000000 and an
ormask of 0x00000020.

VsetMode()
WORD VsetMode(mode)
WORD mode;

VsetMode() places the video shifter into a specific video mode.

OPCODE 88 (0x58)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS mode is a WORD bit array arranged as follows:

Name Bit(s) Meaning

BPS1 (0x00)
BPS2 (0x01)
BPS4 (0x02)
BPS8 (0x03)
BPS16 (0x04)

0-2 These bits form a value so that 2 ^ X represents the
number of bits per pixel.

COL80 (0x08)
COL40 (0x00)

3 80 Column Flag (if set, 80 columns, otherwise 40)

VGA (0x10)
TV (0x00)

4 VGA Flag (if set, VGA mode will be used, otherwise
television/monitor mode)

PAL (0x20)
NTSC (0x00)

5 PAL Flag (if set, PAL will be used, otherwise NTSC)

OVERSCAN (0x40) 6 Overscan Flag (not valid with VGA)

STMODES (0x80) 7 ST Compatibility Flag

VERTFLAG (0x100) 8 Vertical Flag (is set, enables interlace mode on a color
monitor or double-line mode on a VGA monitor)

VsetRGB() – 4.107

T H E A T A R I C O M P E N D I U M

– 9-15 Reserved (set to 0)

If mode is VM_INQUIRE (-1) then the current mode code is returned without
changing the current settings.

BINDING move.w mode,-(sp)
move.w #$58,sp
trap #14
addq.l #4,sp

RETURN VALUE VsetMode() returns the prior video mode.

CAVEATS VsetMode() does not reset the video base address, reserve memory, or
reinitialize the VDI . To do this, use VsetScreen().

COMMENTS Some video modes are not legal. 40 column monoplane modes and 80 column
VGA true color modes are not supported.

SEE ALSO VsetScreen(), Setscreen()

VsetRGB()
VOID VsetRGB(index, count, rgb)
WORD index, count;
RGB *rgb;

VsetRGB() sets palette registers using 24-bit RGB values.

OPCODE 93 (0x5D)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS index specifies the first palette index to modify. count specifies the number of
palette entries to modify. rgb is a pointer to an array of RGB elements which will
be copied into the palette.

BINDING pea rgb
move.w count,-(sp)
move.w index,-(sp)
move.w #$5D,-(sp)
trap #14
lea 10(sp),sp

COMMENTS This call is device-dependent by nature. It is therefore recommended that
vs_color() be used instead.

4.108 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO VgetRGB(), EsetPalette(), Setpalette(), vs_color()

VsetScreen()
VOID VsetScreen(log, phys, mode, modecode)
VOIDP log, phys;
WORD mode, modecode;

VsetScreen() changes the base addresses and mode of the current screen.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions. The ability of this call to utilize the modecode parameter and
the memory allocation feature is limited to systems having a ‘_VDO’ cookie with a
value of 0x00030000 or greater.

PARAMETERS log is the address for the new logical screen base. phys is the new address for the
physical screen base. If either log or phys is NULL , the XBIOS will allocate a
new block of memory large enough for the current screen and reset the parameter
accordingly.

mode defines the screen mode to switch to (same as Getrez()). Setting mode to
SCR_MODECODE (3) will cause modecode to be used to set the graphic mode
(see VsetMode() for valid values for this parameter), otherwise modecode is
ignored. If any of these three parameters is set to SCR_NOCHANGE (-1) then
that value will be left unchanged.

BINDING move.w modecode,-(sp)
move.w mode,-(sp)
pea phys
pea log
move.w #$05,-(sp)
trap #14
lea 14(sp),sp

CAVEATS Changing screen modes with this call does not reinitialize the AES. The VDI and
VT52 emulator are, however, correctly reinitialized. The AES should not be used
after changing screen mode with this call until the old screen mode is restored.

COMMENTS TOS 1.00 and 1.02 required that its physical screen memory be on a 256 byte
boundary. All other Atari computers only require a WORD boundary.

This call is actually a revised binding of Setscreen() developed to allow access
to the newly available modecode parameter.

SEE ALSO Setscreen(), VsetMode()

VsetSync() – 4.109

T H E A T A R I C O M P E N D I U M

VsetSync()
VOID VsetSync(external)
WORD external;

VsetSync() sets the external video sync mode.

OPCODE 90 (0x5A)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS external is a WORD bit array defined as follows:

Name Bit Meaning

VCLK_EXTERNA
L

0 Use external clock.

VCLK_EXTVSYN
C

1 Use external vertical sync.

VCLK_EXTHSYN
C

2 Use external horizontal sync.

– 3-15 Reserved (set to 0)

BINDING move.w external,-(sp)
move.w #$5A,-(sp)
trap #14
addq.l #2,sp

CAVEATS This call only works in Falcon video modes, not in compatibility or any four color
modes.

Vsync()
VOID Vsync(VOID)

Vsync() pauses program execution until the next vertical blank interrupt.

OPCODE 37 (0x25)

AVAILABILITY All TOS versions.

BINDING move.w #$25,-(sp)
trap #14
addq.l #2,sp

4.110 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

WavePlay()
WORD WavePlay(flags, rate, sptr, slen)
WORD flags;
LONG rate;
VOIDP sptr;
LONG slen;

WavePlay() provides a easy method for applications to utilize the DMA sound
system on the STe, TT030, and Falcon030 and playback user-defined event sound
effects.

OPCODE 165 (0xA5)

AVAILABILITY Available only when the ‘SAM\0’ cookie exists.

PARAMETERS flags is a bit mask consisting of the following options:

Name Mask Meaning

WP_MONO 0x00 The sound to be played back is
monophonic.

WP_STEREO 0x01 The sound to be played back is in stereo.

WP_8BIT 0x00 The sound to be played back was
sampled at 8-bit resolution.

WP_16BIT 0x02 The sound to be played back was
sampled at 16-bit resolution.

WP_MACRO 0x100 Play back a user-assigned macro or
application global sound effect. This flag is
exclusive and modifies the meaning of the
other parameters to this call as shown
below.

rate specifies the sample rate in Hertz (for example 49170L to play back at 49170
Hz). If WP_MACRO was specified in flags, then this parameter is ignored and
should be set to 0L.

sptr is a pointer to the sound sample in memory. If WP_MACRO was specified in
flags then this parameter should be a LONG containing either the application
cookie specified in the .SAA file or the ‘SAM\0’ cookie to play an application
global.

slen is the length of the sample in bytes. If WP_MACRO was specified in flags
then slen is the macro or application global index as specified in the .SAA file.
Valid application global values are as follows:

Name slen Usage

WavePlay() – 4.111

T H E A T A R I C O M P E N D I U M

AG_FIND 0 Call WavePlay() with this value when the user requests
display of the ‘Find’ dialog box.

AG_REPLACE 1 Call WavePlay() with this value when the user requests
display of the ‘Replace’ dialog box.

AG_CUT 2 Call WavePlay() with this value when the user requests a
‘Cut’ operation.

AG_COPY 3 Call WavePlay() with this value when the user requests a
‘Copy’ operation.

AG_PASTE 4 Call WavePlay() with this value when the user requests a
‘Paste’ operation.

AG_DELETE 5 Call WavePlay() with this value when the user requests a
‘Delete’ operation. This should not be called when the user
presses the ‘Delete’ key.

AG_HELP 6 Call WavePlay() with this value when the user requests
display of application ‘Help.’ This should not be called
when the user presses the ‘Help’ key.

AG_PRINT 7 Call WavePlay() with this value when the user requests
display of the ‘Print’ dialog box.

AG_SAVE 8 Call WavePlay() with this value when the user requests
that the current document be saved. This should not be
used for any operation that calls the file selector.

AG_ERROR 9 Call WavePlay() with this value when the application
encounters an error not presented to the user in an alert or
error dialog (error dialogs may be assigned sounds).

AG_QUIT 10 Call WavePlay() with this value when the user requests
that the application exit. Use this global after the user has
confirmed a quit with any dialog box that may have been
necessary.

BINDING move.l slen,-(sp)
pea sptr
move.l rate,-(sp)
move.w flags,-(sp)
move.w #$A5,-(sp)
trap #14
lea 16(sp),sp

RETURN VALUE WavePlay() returns WP_OK (0) if the call was successful, WP_ERROR (-1) if
an error occurred, or WP_NOSOUND (1) to indicate that no sound was played
(either because the user had not previously assigned a sound to the given macro or
SAM was disabled).

CAVEATS This function is only available when the System Audio Manager TSR (available
from Atari Corp. or SDS) is installed. Extended development information is
available online the Atari Developer’s roundtable on GEnie.

Because of previously misdocumented sample rates, the value for rate must be
33880 to play back a sample at 32880 Hz, 20770 to play back a sample at
19668 Hz, and 16490 to play back a sample at 16390 Hz.

4.112 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS Even if an application does not install any custom events in a .SAA file, an
application must still provide a .SAA file if it wishes to use application globals so
that the SAM configuration accessory allows the user to assign those sounds.

A macro is commonly used to access the application global sounds available as
follows:

#define WavePlayMacro(a) WavePlay(WP_MACRO, 0L, SAM_COOKIE, a
);

Xbtimer()
VOID Xbtimer(timer, control, data, hand)
WORD timer, control, data;
VOID (* hand)(VOID);

Xbtimer() sets an interrupt on the 68901 chip.

OPCODE 31 (0x1F)

AVAILABILITY All TOS versions.

PARAMETERS timer is a value defining which timer to set as follows:

Name Timer Meaning

XB_TIMERA 0 Timer A (DMA sound counter)

XB_TIMERB 1 Timer B (Hblank counter)

XB_TIMERC 2 Timer C (200Hz system clock)

XB_TIMERD 3 Timer D (RS-232 baud rate generator)

control is placed into the control register of the timer. data is placed in the data
register of the timer. hand is a pointer to the interrupt handler which is called by the
interrupt.

BINDING pea hand
move.w data,-(sp)
move.w control,-(sp)
move.w timer,-(sp)
move.w #$1F,-(sp)
trap #14
lea 12(sp),sp

SEE ALSO Mfpint(), Jenabint(), Jdisint()

