

An Evaluation of

Client/Server Development Tools:

A Comparison Between

Delphi Client/Server and PowerBuilder Enterprise

Prepared by Michael Lant, Sphere Data Systems

�

Table of Contents

�TOC \o�Introduction: An Overview of Client/Server Tools	2

	PCs and the Evolving Client/Server Model

	The Next Generation

What is Delphi?	4

	Redefining Client/Server Development

	The Delphi Component Model

Performance	6

	Compiled vs Interpreted Code

	Data Access - A New Approach

Rapid Application Development (RAD)	8

	Minimum Coding, Maximum Flexibility

	DataWindows vs Reusable Forms

Component Reuse	11

	The Delphi Inheritance Model

	A DataWindows Alternative

	Exception Handling

Database Scalability	15

	Borland Database Engine

	Local InterBase Server

Conclusion	16

��

Introduction: An Overview of Client/Server Tools

Client/server development tools remain one of the fastest-growing sectors of the software industry. Forrester Research predicts that the number of client/server developers will climb from 128,400 in 1994 to 698,000 in 1996, while META Group research suggests that over 90% of all new applications will be based on the client/server model. This is an overwhelming endorsement of the popularity of client/server computing.

Client/server computing, however, is not the panacea that many have been predicting. Complex environments, with mixed data sources and immature development tools, have made client/server development a complex undertaking. Researchers such as the Gartner Group have found that the most pressing issues facing current developers of client/server applications include performance of deployed applications, rapid application development (RAD), component reuse and database scalability. Although these concerns are not unique to client/server application development, they are perhaps even more important in this sector, because of the well-documented limitations of first-generation client/server tools.

PCs and the Evolving Client/Server Model

PCs facilitated the downsizing era, by providing inexpensive platforms for the production of reasonably capable solutions that addressed genuine business needs. These applications brought with them the promise of freedom from host-based technologies and shortened development cycles. But as these PC- and network-based applications grew, user counts expanded and more functionality was necessary. PC database applications frequently “hit the wall.”

In addition, all database applications have at their very heart business rules. These rules control processes such as creating new customers and data validation. Historically, PC application development has placed the enforcement of business rules into the user interface, so programmers would create a screen and write code to respond to user input. This code would perform a specific action based on the presence, or value of, certain information. Such actions might include allowing or preventing the posting of changes to customer data. But the user interface is certainly not the best place to store business rules.

The advent of client/server brought with it a new model that allows for business rules to be stored with the data itself. This is accomplished through the use of triggers and stored procedures created in the actual database. These procedures would enact routines to perform much the same processing that might be performed in a PC application, except that the host handles this task for all of its clients. This approach ensured that there was only one source for the business rules, since they were stored with the data. In many ways, this approach is enticing, but in reality it is plagued with problems.

When business rules are created to be enforced at the server level, they tend to be difficult to write and debug. According to David Sarna and George Febish in the September 1994 issue of Datamation: “These are not the tools for creating and maintaining good code. Doing it this way is SQL-abuse; SQL as a query language was never designed to do this kind of procedural computation.”

With this model, as an application grows, so do the number of rules that must be created and controlled by the database. Rather than focusing on the efficient storage and retrieval of data, server resources become tied down enforcing business rules - such as ensuring that a last name is supplied for each new customer. Again, Sarna and Febish point out that “many of your business and validation rules are needed so often that they must sit on the client, or performance will go straight to hell.”

The Next Generation

Borland’s Delphi is truly a next generation client/server development tool. Although it fully supports the placement of business rules in the user interface or on the server (or even a combination of both), it also presents the possibility of another model that separates the business rules from both the user interface and the server. This approach has the potential to provide greater performance, better scalability, better code reuse and an ideal platform for RAD. Delphi makes this possible because it employs an open architecture, whereby developers can use or create a wide variety of specialized components when creating applications.

Comparative reports of software tools typically focus on feature matrices or checklists to relate the features of one product versus those of its competitors - and in this context Delphi would certainly emerge as a winner. Checklists, however, do not necessarily help developers understand how one product could be far more effective than another. Thus, the content of this white paper is focused on the needs of client/server application developers, and how Delphi addresses those needs.

�

What is Delphi?

Delphi represents the next generation of client /server and general Windows application development tools. It is a product of Borland's long-standing leadership in programming languages, database development tools, and object-oriented programming (OOP) technology. Delphi is unique in providing a completely visual integrated development environment (IDE) that is built around a powerful object-oriented compiled language (Object Pascal). The IDE shields programmers from the complexity of Windows development, by encapsulating the Windows application programming interface (API) inside robust, reusable components.

The implementation of a component-based architecture enhances power and flexibility. Components range from simple items (such as buttons, text edit regions or sliders) through to powerful specialized tools (such as high-performance database components used for table access, queries and batch updates). While most client/server development tools include a limited selection of these basic components, Delphi ships with more than 75 reusable components.

Developers may modify Delphi components, create their own, or purchase third-party components (which include text processors, graphics, communications and statistical utilities, among others). Once installed on Delphi’s component palette, these additional components become part of the IDE, so that Delphi can be tailored to whatever the developer (or team of developers) specifically requires.

Because of the unique way in which components are implemented in Delphi, it offers similar open architecture benefits to those of the ISA bus, for example. A component is a self-contained block of code that includes all functionality to work within a Delphi application. Just like inserting a new PC expansion card, any new component added to the library becomes part of Delphi and is indistinguishable from those that ship with the product. This open, component-based structure means that Delphi developers are not tied to any particular development methodology, and may use whatever tools or components are necessary to accomplish a task.

Redefining Client/Server Development

First generation visual client/server development tools (such as PowerBuilder) feature environments where all components are tightly integrated and dependent upon one another. Such an approach does not encourage modification or customization of existing components, because when a component is significantly altered, it has the potential of changing the way in which it interacts with others. This not only impedes the evolution of the base product, but it also has the potential to introduce unpredictable behavior.

Delphi, on the other hand, has as its foundation a true object-oriented language, with the result that its components are essentially autonomous objects. Component changes are therefore unlikely to affect overall product stability. Also, problems with any specific component behavior can often be corrected by the developer via subclassing, and thereby overriding the errant behavior. This also holds true for components created by a developer or purchased from third-party suppliers.

Delphi Component Types

Delphi’s Visual Component Library (VCL) includes more than 75 pre-built components, which can be used in applications and deployed freely. These include the following:

Standard - Menus, Edit, Label, Buttons, Scroll Bar;

Additional - Bitmap Button, SpeedButton, Notebook, Outline, DrawGrid, Image, Multimedia;

Data Access - Database, Table, Query, Batch Move, Report;

Data Controls - DataGrid, DBNavigator, DBLabel, DBEdit, DBImage, ComboBoxes;

Dialogs - Open, Save, Font, Color, Print, Print Setup, Search/Replace, Tabbed Notebook;

System - Timer, FileListBox, Drive and Directory Combo OLE, DDE;

VBX - Chart, Picture, Gauge;

Samples - Gauge, ColorGrid, SpinButton, SpinEdit, Outline, Calendar.

Delphi developers can also create their own components, by modifying existing Delphi components or building them from scratch. The source code for Delphi’s VCL is available to help developers in this task. Newly-developed components (or those purchased from third-party developers) can be added to Delphi’s component palette.

�

Performance

In a client/server environment, overall performance depends upon a combination of factors, including efficiency of the database server, network bandwidth, “middleware” or driver performance, data access techniques, and speed of the user interface. A well-designed architecture should leverage all of these characteristics. In almost all respects, Delphi outperforms PowerBuilder by a significant margin, due to its optimizing compiler, efficient VCL components and high-performance native SQL drivers. Some sample benchmark results are listed below:

Operation	(All times in seconds)			Delphi		PowerBuilder

String parse to measure non-database performance;	2.7		22.8

reading file and splitting record into substrings

Use a query to load a form from a 20,000 record		4.6		70.9

table. Form supports searching and filtering.

Post a record (single order)				1.4		1.3

Apply a filter on 20,000 record table			3.0		6.2

Update record						1.5		1.1

Search for a value, 20,000 records			1.1		1.5

User Interface Performance and Compiled vs Interpreted Code

The user interface (UI) is the most visible portion of any application. UI performance covers obvious functionality such as screen updates, along with the underlying processing of data (including numerical calculations and string manipulations). It is the portion that users interact with every day, and it is also the first place where performance differs noticeably between PowerBuilder and Delphi.

Delphi uses an optimizing native code compiler to generate standalone executable files (.EXEs) containing machine code instructions. These executable files are self-contained and, other than the database engine and the data itself, require no external files to run. Although PowerBuilder creates an executable file, it is not truly compiled. When a PowerBuilder application is run, source code instructions are converted to machine code before the instructions may be executed. This extra level of translation introduces significant run-time overhead and seriously degrades performance.

To support its runtime interpretation, PowerBuilder requires external support files in the form of runtime interpreter Dynamic Link Libraries (DLLs). In addition to the application code, these DLLs must be loaded into memory at runtime, creating a larger memory “footprint” and leaving less memory for processing and buffering data. As a result, Delphi applications execute between 10 and 20 times faster than applications created using p-code (“pseudo-code”) interpreters such as PowerBuilder, even on target systems with minimal memory.

In moving from PowerBuilder 3.0a to 4.0, PowerSoft tuned its runtime interpreter to achieve slightly better performance on systems fitted with 16M of memory. This performance boost often comes at a cost, however, as final applications can increase from 20 to 70 percent in size. Despite minor enhancements, there is no way for an interpreted p-code language to even approach the execution speed of a compiled language like that of Delphi.

Data Access - A New Approach

The two primary methods of implementing client/server solutions with PowerBuilder involve placing business rules on either the client or the server. Unfortunately, neither one adequately addresses the issue of overall performance. If developers choose to place the burden of enforcing business rules on the server, they risk performance bottlenecks due to server and network overload. Yet shifting this task to the comparatively slow PowerBuilder UI is not an ideal solution. As it turns out, PowerBuilder's design makes it difficult not to attach at least some of the business rules directly to the UI.

Delphi, on the other hand, fully supports either of these techniques, as well as allowing for a more flexible model. Delphi developers can create a “virtual third-tier” layer containing business rules independent of the UI and the server. Instead, these rules can be encapsulated in non-visual components (NVCs) in a layer between the UI and database engine. Physically and conceptually, this separates the data and related rules from its representation to the user.

This approach brings the distributed computing vision of client/server another step closer to reality, and also provides a practical means of enhancing performance. All data moving to and from the application passes through this central conduit. The “third-tier” NVCs may be single Delphi components such as a TTable or TQuery or sophisticated combinations of components. By having a single access point to lookup tables (such as State, Province or Product Codes that may be used by several forms), the application need only fetch this data once - when it is started. This can greatly reduce the number of server requests, alleviating network traffic and server load.

More importantly, developers can place connections to the main database tables here as well. As users move between forms, cursors to their data would remain in place. Thus, if basic customer information were displayed in one form, moving to another form displaying credit history would invoke it already pointing to the appropriate customer. PowerBuilder has limited functionality in this area through the dwShareData function, which allows sharing of data between DataWindows. This process results in duplication of large, complex components, and unless sufficient RAM is available, this can further degrade client performance. In the same situation, Delphi reduces the number of components used, since data access and display are accomplished with separate components.

�

Rapid Application Development (RAD)

Rapid Application Development (RAD) is an attempt to address the issues of building applications tailored to customer requirements and completing projects with minimal re-working. Historically, serious application development involved tremendous effort from a team of analysts who quizzed potential users to determine every possible requirement of the application. From this collection of information, volumes of carefully documented specifications were produced, then the users would sign off and programming commenced. Some time later, the development team would finally emerge with an application, and users were then expected to adopt the product.

This model had several shortcomings. Often, the people who built the application were not the same as those who did the analysis, resulting in reinterpretation of the specifications. Furthermore, users are often not well equipped to diagnose and describe their technology needs. During the development process, little communication existed between the developers and eventual users of the application. In days gone by, when terminals and batch operations were the only UI, this may have been an adequate model. However, with the advent of PCs, user expectations are significantly higher in regard to the UI characteristics of modern client/server applications. These applications must now provide access to data, and present it in ways that are most meaningful to users, with tools to assist in the analysis and interpretation of the data. As a result, most large organizations are confronted with a backlog of applications, which must be tackled with limited staff, budgets and time.

RAD is a development methodology based around an iterative process of specifying, creating and enhancing an application until the final product is completed. RAD is based on the notion that it is difficult to fully predefine a problem domain as complex as today's typical business applications. As the developers step through each iteration from prototype to finished product, the requirements become more clearly defined. Although not ideal for batch-style applications, RAD is very effective for the development of applications where the UI design is a key consideration.

Minimum Coding, Maximum Flexibility

RAD development tools should allow developers to quickly build prototypes with as little

code as possible, and Delphi is very powerful in this respect. Building a database application with a classic Customer -> Orders -> Details form (including database connections) can be done with no lines of code in Delphi. By comparison, PowerBuilder developers must write a dozen lines of code to simply link to a database, then they must also write code to open the form, query the tables and synchronize the tables appropriately.

Delphi’s comprehensive array of data-aware components minimizes the level of customization that must be done to deliver a necessary feature or function. Where appropriate functionality does not exist in a VCL component, developers have the option of modifying the component or using a third-party component (such as a VBX control or Delphi native component). Any component may be subclassed (exploiting inheritance) and reused in other areas.

DataWindows vs Reusable Forms

RAD methodology assumes that application design evolves through several phases, so a true RAD tool should allow developers to easily adapt to changes (which can be significant). Because PowerBuilder combines data access and display in a single component, some design changes can prove extremely difficult. When a customer requirement suddenly dictates a new approach to either data access or display, this often requires a rewrite of the DataWindow and/or the entire form. Since Delphi separates these two concepts, the adaptation process is much simpler.

As with most first-generation visual development tools, PowerBuilder embeds application code inside objects - with the exception of the DataWindow, which represents both the conduit and the display format of the data. A DataWindow is created in a separate section (or “painter”), and cannot have event-handling code written until it is pasted into a form, whereupon the relevant application code is then permanently attached to that DataWindow. Since code is hidden inside objects scattered about the form, it becomes difficult for developers to locate, and it also may be affected by modifications to objects on the form. Furthermore, by “hard-wiring” the DataWindow to the code, it becomes difficult to reuse that DataWindow in other forms.

Delphi developers address this issue by writing event handlers, which are pointers to specific procedures, or references within components that indicate what procedure will be called when a particular event occurs (mouse click, timer interrupt, etc). Form procedures are stored in a “unit” file, with all the code visible to the developer, so there is no need to search through various objects track down specific code fragments. Once procedures are created, they may be called by any event of any component. Event handlers can also call procedures written for any other event handler, or even directly access components or procedures residing in other forms. Deleting an object (such as a button) does not delete procedures created for that object, so that code changes are easier, faster and safer.

Since Delphi uses the same property/event model for all components, whether they are visual or non-visual, it is more consistent and easier to learn than products such as PowerBuilder. The end result is that Delphi clearly provides an ideal environment for RAD.

�

Component Reuse

Inheritance is the ability to create new objects (descendants) from a base object (ancestor). A descendant inherits all characteristics of the ancestor, although these can be overridden. Inheritance is an object-oriented programming (OOP) fundamental that provides a means by which programmers can reuse code, and it encourages development of base objects with characteristics that are likely to be used again. Since descendants inherit any changes made to the parent object, changes that are made will propagate throughout any objects that descend from a base object. The resulting collection of objects is often called a class hierarchy or class library.

PowerBuilder allows developers to use inheritance to create a class library based on forms or groups of controls. The problem with the PowerBuilder approach is that it emphasizes inheritance of the user interface. Because DataWindows perform the task of both data access and data display, and because of the close binding between a DataWindow and various objects (and code) on a form, UI inheritance is the only type of inheritance that makes sense in PowerBuilder. However, what developers mostly need to preserve and reuse is not the visual representation of the data, but instead the complex logic that drives the business rules. In fact, the visual representation usually changes the most. Hence, reuse through inheritance in PowerBuilder often requires the developer to spend significant time overriding the UI in order to preserve the underlying code. As a result, PowerBuilder forms often carry around much unwanted baggage.

Delphi takes an entirely different approach. In its first release, Delphi, supports inheritance of forms in code only, compared to PowerBuilder’s support of UI inheritance. With the ability to separate business rules from the UI, a Delphi developer need only write these once. Different forms can access the same data components and inherit their business rules, but are not bound to them. Hence the developer is free to create any number of forms displaying data in whatever format is appropriate, knowing that the non-visual components supplying data to the user interface have fully encapsulated these business rules.

Such an approach would be difficult with a product such as PowerBuilder, because the underlying interpreter-based architecture is not truly object-oriented. According to Steve Benfield, quoted in the June/July 1994 issue of PowerBuilder Developers Journal: “PowerBuilder’s DataWindows is not truly object-oriented. I could try to not use DataWindows and code PowerBuilder in a purely object-oriented way. However, the system would be so slow that it would be useless.”

The Delphi Inheritance Model

Inheritance is fundamental to Delphi, and all VCL components ultimately descend from an object known as TObject (the "T" prefix is an accepted standard to denote an object type). TObject has a great deal of capability built into it, and knows how to handle certain types of errors, along with how to display itself in the form designer. Many other components descend from TObject, each acquiring more capability and becoming more specialized along the way.

The familiar case of copying to the Windows clipboard is an example of where Delphi’s inheritance can be most powerful. This turns out to be a complex procedure requiring more than 100 lines of code in PowerBuilder, whereas the following code sample shows how the same CopyToClipBoard is handled in Delphi:

 if ((ActiveControl) is TCustomEdit) then

TCustomEdit(ActiveControl).CutToClipBoard

This examples surfaces three important issues. The first is that it highlights how some very basic functionality is missing from PowerBuilder. The second is that Delphi developers deal with functions such as this on a much higher level than with traditional programming languages. Thirdly, the inheritance benefits are obvious. TCustomEdit is an ancestor of most of the editable components in Delphi (such as TEdit, TDBEdit and so on) In this example, the is operator checks to see if the active component is a descendant of TCustomEdit, and if so, the next line casts the active control as its ancestor - TCustomEdit. Because CutToClipBoard is a method of TCustomEdit, all controls inherited from it will also inherit this method.

A DataWindows Alternative

DataWindows are an important feature of PowerBuilder. By attempting to incorporate all database capability into a single structure, the result is a component that is extremely powerful, but highly complex. The PowerBuilder 3.0a reference manual allocates almost 150 pages to explaining the properties and syntax of the dwDescribe and dwModify functions, which are just two of the more than 130 functions used within DataWindows. According to Breck Carter, quoted in the June/July issue of PowerBuilder Developers Journal: "dwModify() and dwDescribe is a topic that I know has been a sticking point for many developers. These functions can be daunting with their screwy syntax and difficult-to-debug commands . . . If DataWindows' bazillion functions and events don't get you, you probably won't avoid being shocked and overwhelmed by dwModify.”

PowerBuilder developers place all of their code and forms in a single .PBL application file, while Delphi applications reside in three main file types. The application itself comprises .DPR and .PAS files, while .DFM files contains the binary representation of forms (buttons, grids etc). Delphi’s project manager provides a high-level view of all these files, and units from other directories or projects can be easily included. By storing units in separate files, team development is simplified and the allocation of tasks is made easier. Developers need not even be in the same physical location.

During compilation, Delphi keeps track of which files have changed since the last compile and only generates those changes. Delphi's compilation speed is the fastest in the industry, at more than 350,000 lines of code per minute on a 66MHz Pentium fitted with 8M of RAM. A reasonably complex client/server application containing over a dozen forms will compile all files in less than a minute.

PowerBuilder’s interpreter-based design makes direct comparisons with Delphi’s compiled performance unrealistic. PowerBuilder developers cannot exit the code painter until their code is syntactically correct, so that moving between different code areas is greatly restricted. PowerBuilder then generates p-code from its scripting language, along with a runtime executable file. This p-code generation stage takes about the same amount of time as the complete syntax checking and compilation to machine code of a Delphi application. The PowerBuilder application, however, still requires translation and decoding overhead each time it is executed.

As the complexity of applications and size of development teams grows, so does the need to maintain control of the process. Keeping track of the latest versions of source files is an important part of this process, and Delphi accomplishes this by providing a direct interface to PVCS, a leading version control utility. Delphi will directly link to the PVCS DLL and integrate it into the development environment.

PowerBuilder developers frustrated with limitations of its programming language are forced to leave the environment and must turn to languages such as C++ or Pascal. Once they leave PowerBuilder, they must abandon any of their custom class libraries, which are not supported by other products. Delphi does not present such obstacles, as it is built around a comprehensive structured, object-oriented language featuring pass-through SQL commands and inline assembler. Since Delphi can encapsulate applications into DLL format, any Windows program (including PowerBuilder) can call a Delphi-generated DLL. In the same manner, Delphi applications can also access DLLs created using other development tools.

Exception Handling

When developing serious client/server applications, it becomes essential to write code that is able to deal with the possibility of any process failing. Again, according to Breck Carter in the 1994 Special Issue of PowerBuilder Developers Journal: “The PowerScript language is less than ideal when it comes to error handling, Most functions can diagnose errors, but with very few exceptions the default action is to ignore the error and proceed. There are no debugging switches or compiler directives to change this behavior to trap all errors and halt. With the exception of the global SystemError event, there is little language support for automatic error detection or handling.”

This lack of support from the PowerScript language makes it difficult, if not impossible to create

robust error-handling routines without writing enormous amounts of code. In contrast, Delphi

introduces a new and more powerful error-handling methodology. To understand how important this new approach is, we must first look at how it is done.

Fundamental to Delphi is the concept of objects. Every control in Delphi descends ultimately from a base object control called TObject. As shown in the diagram above, TObject and hence, all of its

descendants already knows about errors. This knowledge is passed to the programmer by means of objects. When an error occurs, Delphi instantiates an Exception object of that exception type. For example, if a divide by zero error occurs, an EDivideByZero object is created. All forms have built into them, the means of dealing with most errors. Rather than having to write code to test for every possible failure, the following construct is used:

try

	{ statements }

 except

	on ESomething do { specific exception handling code } ;

 		else {default exception-handling code } ;

 end;

Delphi also allows developers to create their own exception types as follows:

type

EpasswordInvalid = class(Exception) ;

This new user type exception is used simply as follows:

 if Password <> CorrectPassword then

raise EpasswordInvalid.Create(Incorrect password entered') ;

These examples are trivial and meant only to display concepts. Delphi exception handling actually has capabilities far beyond this. For instance, Windows General Protection Failure (GPF) errors that are impossible to deal with in PowerBuilder applications may be handled via Delphi’s EGPFault exception type. This simple construct provides enormous power and flexibility, and minimizes the amount of code that needs to be written, further shrinking the development cycle.

�
Scalability

As more attention is focused on client/server development, the scope of such applications is expanding. Where once it was sufficient to provide basic data entry and inquiry capabilities, users now demand that their applications have functionality far beyond what can be provided from

mainframe solutions. Delphi is the ideal tool for this type of transition, being built around Object Pascal, an enhancement of a language that is already known by more than two million developers.

Delphi does not hide code within UI objects, and is thus more familiar to mainframe developers and easier to work with than PowerBuilder. It maximizes code reuse, minimizes development turnaround time and has the performance and stability necessary for large applications. It is also infinitely extensible, due to its OOP architecture, comprehensive array of components and full-featured programming language.

Many applications are also being scaled up from PC databases written in dBASE, Clipper, FoxPro and Paradox. As these applications make the transition from PC environments into the full client/server model, they must be able to address both PC and server data. PowerBuilder has extremely poor performance when accessing PC databases, and does not provide support for Paradox tables beyond the Paradox 3.5 format, nor does it fully support the Paradox file locking mechanism.

Some organizations decide that a portion of their data should reside on a server platform such as Oracle, while other portions should remain in a PC format such as dBASE. Because of Delphi's broad database support and extremely good performance against both PC and server data, it is the ideal tool for when mixed data access is required. Developers need only one development tool regardless of whether the data source is PC-based, server-based or both. Delphi is the only

development tool that can adequately address all of these models. On the other hand, PowerBuilder has opted to largely ignore the PC database side.

Borland Database Engine

Although not component-based itself, the component-like architecture of the Borland Database

Engine (BDE) fits neatly into the architecture of Delphi. As the core technology for most of

Borland's database tools including dBASE and Paradox, and used by millions of database users, the BDE has evolved into an extremely stable, high-performance technology that can deal with almost any database format It may be easily configured to access popular server formats (including Oracle, Sybase, Informix and InterBase) using high-performance SQL Links. PC database formats such as dBASE and Paradox are accessed directly via drivers built into BDE, which also includes support for the wealth of ODBC drivers.

The BDE is also sold as a separate product, as all of its functionality is accessible to developers via an API. However, Delphi developers are most likely to use the native data-aware components to interact with the BDE, although it is possible to write directly to the API or even bypass it altogether if required. This open architecture provides a level of power and flexibility not possible within PowerBuilder.

Local InterBase Server

The Local InterBase Server is a locally-installed Windows version of Borland’s powerful InterBase workgroup server. Unlike the Watcom SQL engine that ships with PowerBuilder, this product is a full-featured SQL database, including:

Stored Procedures and triggers

Automatic two-phase commit

Explicit transaction management

Declarative referential integrity

Event alerters

Simultaneous access to multiple databases and transactions

Multi-generational architecture

Updatable views

Outer joins

User defined functions (UDFs)

Because the Local InterBase Server supports most of the functionality of the high-end InterBase server, developers can create SQL-based applications using locally-stored data. Thorough testing of these applications can be performed locally, without concern for either the server load or the possibility of damaging live data. Once an application has been tested and debugged locally, it may then be scaled to work with an external database server. If the developer has elected to use specific features of InterBase, these will perform identically when the application is deployed against an external InterBase server.

With PowerBuilder, because the Windows version of WATCH SQL lacks many of the features on the server versions of Watcom SQL, developers cannot experience the benefits of direct scaling that Delphi provides. When PowerBuilder accesses the Windows version of Watcom SQL, it must open a separate application window. Since this is a standard window, users can task-switch to the window or close it - either from the window itself or externally. This makes the Windows version of Watcom SQL unsuitable in a production environment.

The Local InterBase Server, however, loads as a DLL in Delphi and cannot be accessed by users. This, combined with its comprehensive feature set, make the Local InterBase Server ideal for applications running on notebook PCs. When a user returns to the office, the application can be linked to the server version of the database. Applications may therefore scale from notebooks up to Windows NT or Novell NetWare NLM servers, and all the way up to the largest Unix-based systems, without developers needing to change a single line of code. By offering this capability, Delphi represents the ultimate in database scalability.

Conclusion

This paper has examined just a few of the many differences between Delphi and PowerBuilder. Both are clearly high end client/server development tools with excellent features. When examined from the perspectives of performance, scalability, reuse and RAD, Delphi clearly leads the way into the next generation of client/server development.

