
The JavaTM Language Specification
Version 1.0 Beta

Beta Draft of October 30, 1995 10:33 am

Please
Recycle

 1993, 1994, 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This Beta quality release and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this release or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this release is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, WebRunner, Java, FirstPerson and the FirstPerson logo and agent are trademarks or registered trademarks
of Sun Microsystems, Inc. The "Duke" character is a trademark of Sun Microsystems, Inc. and Copyright (c) 1992-1995 Sun
Microsystems, Inc. All Rights Reserved. UNIX® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

October 30, 1995 Java Language Specification iii

Contents

The Java™ Language Specification—DRAFT . 7
0.1 Grammar Notation . 8

1 Lexical Structure . 10
1.1 Unicode Escapes . 10
1.2 Input Lines . 11
1.3 Tokens. 11
1.4 Comments . 12
1.5 Keywords . 13
1.6 Identifiers . 14
1.7 Literals . 14

1.7.1 Integer Literals . 15
1.7.2 Floating-Point Literals . 16
1.7.3 Boolean Literals . 17
1.7.4 Character Literals . 17
1.7.5 String Literals . 18

1.8 Separators. 19
1.9 Operators . 19

2 Types and Values. 20
2.1 Primitive Types and Values . 20

2.1.1 Integral Types and Values . 21
2.1.2 Floating-Point Types and Values . 22
2.1.3 Character Types and Values . 23
2.1.4 Boolean Types and Values . 23

2.2 Reference Types and Values . 23
2.2.1 Class Instances . 23
2.2.2 Arrays. 23
2.2.3 Class Types . 24
2.2.4 Array Types. 24
2.2.5 Interface Types . 24

2.3 Standard Default Values . 24

3 Conversions . 25
3.1 Conversions on Primitive Values . 25
3.2 Conversions on Reference Values . 26
3.3 Assignment Conversion. 26
3.4 Casting Conversion . 27
3.5 Unary Arithmetic Promotion . 28
3.6 Binary Arithmetic Promotion . 28

iv Java Language Specification October 30, 1995

4 Names and Variables . 30
4.1 Names. 30
4.2 Variables: Values and References. 30
4.3 Storage Classes . 30
4.4 Name Spaces . 31
4.5 Name Resolution. 31
4.6 External Access . 32
4.7 Rules about Names. 32

5 Program Structure . 34
5.1 Packages and Directories. 34
5.2 Globally Unique Package Names. 34
5.3 Locating Packages on a Host System. 35
5.4 Compilation Units . 35
5.5 Compilation Unit Name Space . 36
5.6 Standard Imports . 36
5.7 The Import Statement. 36

6 Class and Interface Type Declarations . 38
6.1 Class Declarations. 39

6.1.1 Class Modifiers . 39
6.1.2 Superclass Specification. 39
6.1.3 Implemented Interfaces. 40
6.1.4 Class Body . 40
6.1.5 Class Name Space. 40
6.1.6 Multiple Declarations of a Single Name 40
6.1.7 Visibility of Field and Class Names. 41

6.2 Field Declarations . 41
6.2.1 Field Access . 42

6.3 Variable Declarations . 42
6.3.1 Variable Modifiers . 42
6.3.2 Variable Declarators. 43
6.3.3 Variable Initializers . 43

6.4 Method Declarations . 44
6.4.1 Method Modifiers. 44
6.4.2 Result Type . 45
6.4.3 Parameter List . 45
6.4.4 Throws . 46
6.4.5 The Body of a Method . 46
6.4.6 Using this , super and Superclass Type Names. 46
6.4.7 Using Superclass Names . 47
6.4.8 Method Overloading . 47
6.4.9 Method Overriding . 48

6.5 Constructor Method Declarations . 48
6.5.1 Constructor Modifiers . 49
6.5.2 Parameter List . 49
6.5.3 Throws . 49
6.5.4 The Body of a Constructor . 49
6.5.5 Object Creation . 50

6.6 Automatic Storage Management and Finalization 51
6.7 Class Loading and Initialization. 52

6.7.1 Class Loading . 52
6.7.2 Static Variable Initialization . 52

6.8 Interface Declarations. 53

October 30, 1995 Java Language Specification v

6.8.1 Interface Modifiers . 53
6.8.2 Subinterfaces and the extends Clause 53
6.8.3 Body of an Interface . 54
6.8.4 Variable Declarations in Interfaces 54
6.8.5 Method Declarations in Interfaces . 54

6.9 A class and interface Example . 54

7 Arrays . 56
7.1 Array Types . 56
7.2 Declarations of Array-valued Variables . 56
7.3 Array Initialization . 57
7.4 Array Length . 57
7.5 Array Indexing . 57
7.6 Array Allocation and Reclamation. 58
7.7 Arrays versus Strings . 58

8 Blocks and Statements . 59
8.1 Blocks . 59
8.2 Local Variable Declarations. 59
8.3 Statements . 59
8.4 Empty Statement. 60
8.5 Labeled Statements. 60
8.6 Expression Statements . 60
8.7 Selection Statements . 61

8.7.1 The if Statement . 61
8.7.2 The switch Statement . 61

8.8 Iteration Statements . 61
8.8.1 The while Statement . 62
8.8.2 The do Statement . 62
8.8.3 The for Statement . 62

8.9 Jump Statements . 62
8.9.1 The break Statement . 63
8.9.2 The continue Statement. 63
8.9.3 The return Statement . 63
8.9.4 The throw Statement . 64

8.10 Guarding Statements . 64
8.10.1 The synchronized Statement . 64
8.10.2 The try statement . 64

8.11 Unreachable Statements. 65

9 Expressions. 66
9.1 Value of an Expression. 66
9.2 Type of an Expression . 66
9.3 Evaluation Order . 67
9.4 Primary Expressions. 68

9.4.1 this and super 69
9.4.2 null . 70

9.5 Array Access . 70
9.6 Field Access . 70

9.6.1 Field Access through an Object or Array Reference 70
9.6.2 Field Access through a Simple Name 71
9.6.3 Field Access through a Qualified Name 71

9.7 Method Calls . 71
9.8 Allocation Expressions. 73

9.8.1 Allocating New Objects . 73

vi Java Language Specification October 30, 1995

9.8.2 Allocating New Arrays . 74
9.9 Postfix Expressions . 75

9.9.1 Postfix Increment Operator ++ 75
9.9.2 Postfix Decrement Operator -- 75

9.10 Unary Operators . 75
9.10.1 Prefix Increment Operator ++ 76
9.10.2 Prefix Decrement Operator -- 76
9.10.3 Unary Plus Operator + 76
9.10.4 Unary Minus Operator - 77
9.10.5 Bitwise Complement Operator ~ 77
9.10.6 Logical Complement Operator ! 77
9.10.7 Casts . 77

9.11 Multiplicative Operators . 77
9.11.1 Multiplication Operator * 78
9.11.2 Division Operator / 78
9.11.3 Remainder . 79

9.12 Additive Operators. 80
9.12.1 Addition and Subtraction Operators (+ and -) for Arith-

metic Types80
9.12.2 String Concatenation Operator + 81

9.13 Shift Operators . 82
9.14 Relational Operators. 82

9.14.1 Numerical Comparison Operators <, <=, >, and >= . . 83
9.14.2 Type Comparison Operator instanceof 83

9.15 Equality Operators . 84
9.15.1 Numerical Equality Operators == and != 85
9.15.2 Boolean Equality Operators == and !=. 85
9.15.3 Object Equality Operators == and != 85

9.16 Bitwise and Logical Operators . 86
9.16.1 Integer Bitwise Operators &, ^ , and | 86
9.16.2 Boolean Logical Operators &, ^ , and | 86

9.17 Conditional-And Operator && 87
9.18 Conditional-Or Operator || 87
9.19 Conditional Operator ? : 87
9.20 Assignment Operators . 88

9.20.1 Simple Assignment Operator =. 89
9.20.2 Compound Assignment Operators 89

9.21 Expression . 89
9.22 Constant Expression. 89
9.23 Unassigned Variables. 89

10 Collected Java Grammar . 90
10.1 Lexical Structure . 90

October 30, 1995 The Java™ Language Specification—DRAFT 7

The Java™ Language Specification—DRAFT

This document contains a complete specification of version 1.0 of the Java™ Language, a
class-based object-oriented programming language, and of the Java package java.lang ,
which contains certain built-in classes that are defined to be part of the Java Language.

The Java Language is designed to be machine-independent and platform-independent.
The language is fully specified. No part or behavior of the language is described as
“implementation-dependent” or “undefined”.

Our intention is that the behavior of every construct be specified by the language
specification, and that all compilers should accept the same programs. Excepting
programs which are timing dependent or otherwise non-deterministic, and given
sufficient time and sufficient memory, a Java program should compute the same result on
all machines.

We believe that less is more. The Java applet API’s provide a small set of packages that can
be supported on many host platforms and in many standalone environments. The
intention is to provide a basic set of facilities which the programmer can count on across
all Java implementations.

We have opted for a simple language and base system in the hope that it will be widely
and completely understood, implemented and adopted. We are familiar with much more
complicated systems, but realizing that the system will only get larger in later releases we
have elected to start small. Besides, with the explosion of the Internet and dynamic
linking a new package is just a TCP connection away...

In their book on “The C Programming Language”, Brian Kernighan and Dennis Ritchie
said that they felt that the C language “wears well as one’s experience with it grows.” If
you like C we think you will like Java, and we hope that it, too, wears well for you.

P.S.:Please send comments on the Java Language and System Specification by electronic
mail to java@java.Sun.COM, and visit our home page at http://java.sun.com , where
more documentation and Java related discussion groups are available.

8 The Java™ Language Specification—DRAFT October 30, 1995

0.1 Grammar Notation

This manual uses context-free grammars to define the lexical and syntactic structure of a
Java program. The lexical structure is defined by the grammar in §1, the syntactic
structure in §5, §6, §7, §8, and §9. All the lexical and syntactic rules are collected together
in §10.

Terminal symbols are shown in a fixed width font in the lexical and syntactic
productions and throughout this reference manual. These are to appear in the program
exactly as written. Note that the terminals in a lexical production are individual
characters, whereas the terminals in the syntactic productions are tokens consisting of
certain sequences of characters (§1.3).

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined followed by a colon. One or
more alternative expensions for the nonterminal then follow on succeeding lines. For
example, the definition

Catch:
catch (Argument) Block

states that the nonterminal Catch represents the token catch followed by a left parenthesis
token followed by an Argument followed by a right parenthesis token followed by a Block.
As another example, the definition

ArgumentList:
Argument
ArgumentList , Argument

states that an ArgumentList may represent either a single Argument or an ArgumentList
followed by a comma followed by an Argument. (Notice that the definition of
ArgumentList is recursive; the result is that, in principle, an ArgumentList may contain any
positive number of arguments, so far as the grammar is concerned. Such recursive
definitions of nonterminals are common.)

This example states that a JumpStatement may have any one of four forms; the last form,
for example, consists of the token throw followed by an Expression followed by a
semicolon. The subscripted suffix opt, which may appear after a terminal or after a
nonterminal, means that element is optional: the alternative containing the optional
element actually has two cases, one that omits the optional element and one that includes
it. In effect, the definition

JumpStatement:
break Identifieropt ;
continue Identifieropt ;
return Expressionopt ;
throw Expression ;

is merely a convenient abbreviation for

JumpStatement:
break ;
break Identifier ;
continue ;
continue Identifier ;
return ;
return Expression ;
throw Expression ;

October 30, 1995 The Java™ Language Specification—DRAFT 9

and the definition

MethodDeclaration:
MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

is merely a convenient abbreviation for

MethodDeclaration:
ResultType MethodDeclarator Throwsopt MethodBody
MethodModifiers ResultType MethodDeclarator Throwsopt MethodBody

which in turn is an abbreviation for

MethodDeclaration:
ResultType MethodDeclarator MethodBody
ResultType MethodDeclarator Throws MethodBody
MethodModifiers ResultType MethodDeclarator MethodBody
MethodModifiers ResultType MethodDeclarator Throws MethodBody

and so MethodDeclaration actually has four alternative forms.

When the words “one of” follow the colon in a grammar definition, they signify that each
of the terminal symbols on the following line or lines is an alternative definition. For
example,

Digit: one of
0 1 2 3 4 5 6 7 8 9

is merely a convenient abbreviation for

Digit:
0
1
2
3
4
5
6
7
8
9

As an extension of this notation, when such a “one of” alternative in the lexical part of the
grammar appears to be a token, it represents the sequence of characters that make up the
token. For example, the definition

Keyword: one of
abstract boolean break byte

in the lexical part of the grammar would really mean

Keyword:
a b s t r a c t
b o o l e a n
b r e a k
b y t e

1 Lexical Structure

10 The Java™ Language Specification—DRAFT October 30, 1995

1 Lexical Structure

Java programs are written using the Unicode character encoding. (For information about
Unicode, see The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volume 1
ISBN 0-201-56788-1 and Volume 2 ISBN 0-201-60845-6, and the additional information
about Unicode 1.1 at ftp://unicode.org .)

This chapter describes the translation of a raw Unicode character stream into a stream of
Java tokens, using the following three translations, which are applied in turn:

1. A translation of the raw stream of Unicode characters, allowing any Unicode
character to be input as an ASCII escape sequence, resulting in an escaped
Unicode stream.

2. A translation of the escaped Unicode stream into a stream of input characters
and line terminators.

3. A translation of the stream of Unicode characters and line terminators into a
sequence of Java tokens.

In each of these translations the longest possible translation is chosen at each step, even if
the result does not ultimately make a legal Java program, while another translation
would. Thus the characters a--b are tokenized as a, -- , b, which cannot become part of a
grammatically correct Java program, even though the tokenization a, - , - , b could be part
of a grammatically correct Java program.

On systems that do not support full Unicode, translations between Unicode and the
native character encoding must be provided. For example, Unicode is effectively a
superset of ASCII, and Java translation step 1, described just above, provides a simple
way to encode any Unicode character, anywhere in the source code of a program, as an
escape sequence of ASCII characters. Source code may thus be stored as ASCII files rather
than as full Unicode source files. If each ASCII character in the source code file is simply
mapped to the corresponding Unicode character as it fed to the Java compiler, translation
step 1 will then reconstruct Unicode characters represented as escape sequences.

1.1 Unicode Escapes

All Java implementations first perform a transformation on the raw Unicode character
input, translating the characters \u followed by four hexadecimal digits to the Unicode
character whose code point is the indicated hexadecimal value. This transformation
results in a sequence of escaped input characters.

EscapedInputCharacter:
UnicodeEscape
RawInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

RawInputCharacter:
any Unicode character

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 0 a b c d e f A B C D E F

October 30, 1995 The Java™ Language Specification—DRAFT 11

1 Lexical Structure

Note that \ , u, and all the hexadecimal digits are ASCII characters.

A Unicode escape sequence may contain more than one occurrence of the letter u before
the hexadecimal digits. (Programmers writing Java programmers are unlikely to need this
feature; it is included to allow a simple automatic translation of Java source code from full
Unicode to an ASCII file representation that is itself a correct Java program if naively
mapped back to Unicode but from which the original Unicode file can be reconstructed
exactly.)

If a \ is not followed by u, then it is treated as a RawInputCharacter and remains as part of
the escaped Unicode stream. If a \ is followed by u, or more than one u, but the last u is
not followed by four hexadecimal digits, then it is a compile-time error.

The character produced by a Unicode escape is not subject to rescanning. For example, the
raw input \u005cu005b results in the four characters \ u 5 b , not the single character Z
(which is Unicode character 005b); while 005c is indeed the Unicode value for \ , the
resulting \ is not interpreted as the start of a further Unicode escape sequence.

Java systems should use the \u xxxx notation as an output format to display Unicode
characters when full Unicode is not available or a suitable font is not available.

1.2 Input Lines

The second translation step divides the sequence of escaped input characters into lines by
recognizing lines as being terminated by the ASCII characters CR LF or CR or LF. (The idea
is that either a carriage return CR or a line feed LF by itself can serve as a line terminator,
but CR immediately followed by LF is counted as one line teminator, not two.) The result is
a sequence of line terminators and input characters, which are the terminal symbols for
the tokenization process in the third step.

LineTerminator:
the ASCII CR character followed by the ASCII LF character
the ASCII CR character
the ASCII LF character

InputCharacter:
EscapedInputCharacter, but not CR and not LF

This definition of what is a line determines any line numbers produced by a Java compiler
or other Java system component. It also specifies the termination of the // form of
comment (§1.4).

1.3 Tokens

The input characters resulting from escape processing and input line recognition are
further processed by recognizing tokens and discarding comments and whitespace,
thereby reducing the input to a sequence of tokens. This process is described by the
following grammar:

Input:
InputElementsopt

InputElements:
InputElement
InputElements InputElement

1 Lexical Structure

12 The Java™ Language Specification—DRAFT October 30, 1995

InputElement:
Comment
WhiteSpace
Token

WhiteSpace:
the ASCII SP character
the ASCII HT character
the ASCII FF character
LineTerminator

Token:
Keyword
Identifer
Literal
Separator
Operator

As usual, this translation works from left to right and, as usual, the longest possible match
is chosen at each step.

Whitespace is defined as the ASCII space, horizontal tab, and form feed characters as well
as line separators, previously recognized as CR, LF, or CR LF. As a special concession for
compatibility with certain operating systems, the ASCII SUB character (\u1a) is also
treated as whitespace if it is the last character in the escaped input stream.

Comments and white space serve to separate adjacent tokens that, if adjacent, might be
tokenized in another manner. For example, the characters - and = in the input can form
the operator token -= only if there is no intervening white space or comment.

1.4 Comments

A comment in a Java program begins with an occurrence of the characters /* , /** , or // .

Comment:
/ * NotStar TraditionalCommentTail
/ * * DocCommentTail
/ / CharactersInLineopt LineTerminator

TraditionalCommentTail:
* /
NotStar TraditionalCommentTail
* NotSlash TraditionalCommentTail

DocCommentTail:
/
* DocCommentTail
NotStarNotSlash TraditionalCommentTail

NotStar:
InputCharacter, but not *
LineTerminator

NotSlash:
InputCharacter, but not /
LineTerminator

October 30, 1995 The Java™ Language Specification—DRAFT 13

1 Lexical Structure

NotStarNotSlash:
InputCharacter, but not * or /
LineTerminator

CharactersInLine:
InputCharacter
CharactersInLine InputCharacter

These three styles of comments are:

/* text */ All the text from /* to */ is ignored.

/** text */ The enclosed text is used in automatically generated documentation of
the following declaration. The default format for the content of the
comments is described in ???

// text All the text from // to the end of the line is ignored.

The grammar implies the following:

• Comments do not nest.
• Comments do not occur within string and character literals.
• /* and */ have no special meaning in // comments.
• // has no special meaning in comments that begin with /* or /** .

As a result, the text

/* this comment /* // /** ends here: */

is a single complete comment.

1.5 Keywords

The following character sequences, formed from ASCII letters, constitute special tokens
that are reserved for use as keywords.

Keyword: one of
abstract do implements package throw
boolean double import private throws
break else inner protected transient
byte extends instanceof public try
case final int rest var
cast finally interface return void
catch float long short volatile
char for native static while
class future new super
const generic null switch
continue goto operator synchronized
default if outer this

The keywords byvalue , cast , const , future , generic , goto , inner , operator , outer ,
rest , and var are reserved but not used in Java 1.0.

Note that true and false look like keywords but technically are Boolean literals (§1.7.3).

1 Lexical Structure

14 The Java™ Language Specification—DRAFT October 30, 1995

1.6 Identifiers

An identifier is an unlimited length sequence of Unicode letters and digits, the first of
which must be a letter. An identifier must not have the same spelling (code point
sequence) as a keyword.

Identifier:
UnicodeLetter
Identifier UnicodeLetter
Identifier UnicodeDigit

A Unicode character is a digit if its Unicode name contains the word “DIGIT”, as listed on
pages 391–393 of The Unicode Standard, Version 1.0, Volume 1 (see §1.1 for the ISBN); this is
precisely the characters in the following ranges:

\u0030–\u0039 0-9 ISO-LATIN-1 digits
\u0660-\u0669 Arabic-Indic digits
\u06f0-\u06f9 Eastern Arabic-Indic digits
\u0966-\u096f Devanagari digits
\u09e6-\u09ef Bengali digits
\u0a66-\u0a6f Gurmukhi digits
\u0ae6-\u0aef Gujarati digits
\u0b66-\u0b6f Oriya digits
\u0be7-\u0bef Tamil digits
\u0c66-\u0c6f Telugu digits
\u0ce6-\u0cef Kannada digits
\u0d66-\u0d6f Malayalam digits
\u0e50-\u0e59 Thai digits
\u0ed0-\u0ed9 Lao digits
\u1040-\u1049 Tibetan digits

A Unicode character is a letter if it falls in one of the following ranges and is not a digit:

\u0024 $ dollar sign (for historical reasons)
\u0041-\u005a A-Z Latin capital letters
\u005f _ underscore (for historical reasons)
\u0061-\u007a a-z Latin small letters
\u00c0-\u00d6 various Latin letters with diacritics
\u00d8-\u00f6 various Latin letters with diacritics
\u00f8-\u00ff various Latin letters with diacritics
\u0100-\u1fff other non-CJK alphabets and symbols
\u3040-\u318f Hiragana, Katakana, Bopomofo, and Hangul
\u3300-\u337f CJK squared words
\u3400-\u3d2d Korean Hangul Symbols
\u4e00-\u9fff Han (Chinese, Japanese, Korean)
\uf900-\ufaff Han compatibility

Two identifiers are the same only if they are identical, that is, have the same Unicode code
point for each letter or digit. This means, in particular, that the identifiers consisting of the
single letters Latin capital A (\u0041), Latin small a (\u0061), Greek capital A (\u0391),
and Cyrillic small a (\u0430) are all distinct.

This means that composite characters are distinct from the decomposed characters. For
example, a LATIN CAPITAL LETTER A GRAVE \u00c0 could be considered to be the
same as a LATIN CAPITAL LETTER A \u0041 followed by a NON-SPACING-GRAVE
\u0300 when sorting, but these are distinct in Java. See The Unicode Standard, Volume 1,
pages 626–627, about sorting, and pages 412ff about decomposition.

1.7 Literals

A literal is the source representation of a value of a primitive or String type:

October 30, 1995 The Java™ Language Specification—DRAFT 15

1 Lexical Structure

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral

See §3 for a description of primitive types.

1.7.1 Integer Literals

Integer literals may be expressed in decimal (base 10), hexadecimal (base 16), or octal
(base 8) notation, using characters from the ASCII character set portion of Unicode:

IntegerLiteral:
DecimalLiteral IntegerTypeSuffixopt
HexLiteral IntegerTypeSuffixopt
OctalLiteral IntegerTypeSuffixopt

An integer literal is of type long if it is suffixed with an L or l ; otherwise it is of type int .

IntegerTypeSuffix: one of
l L

A decimal literal consists of a digit from 1 to 9, optionally followed by one or more digits
from 0 to 9, and represents a positive integer:

DecimalLiteral:
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

A hexadecimal literal consists of a leading 0x or 0X followed by one or more hexadecimal
digits and can represent a positive, zero, or negative number. Hexadecimal digits with
values 10 through 15 are represented by the letters a through f or A through F,
respectively; each letter used as a hexadecimal digit may be uppercase or lowercase.

HexLiteral:
0x HexDigit
0X HexDigit
HexLiteral HexDigit

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal literal consists of a digit 0 optionally followed by zero or more of the digits 0
through 7 and can represent a positive, zero, or negative number.

1 Lexical Structure

16 The Java™ Language Specification—DRAFT October 30, 1995

OctalLiteral:
0
OctalLiteral OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

The largest decimal literal of type int is 2147483647 (2^31-1). The largest positive
hexadecimal and octal literals of type int are 0x7fffffff and 017777777777
respectively, both representing 2147483647 (2^31-1). The most negative hexadecimal
and octal literals of type int are 0x80000000 and 020000000000 respectively, each of
which represents the decimal value –2147483648 (-2^31). The hexadecimal and octal
literals 0xffffffff and 037777777777 each represent the decimal value -1 .

It is a compile-time error for a decimal literal of type int to be larger than 2^31-1 , or for a
hexadecimal or octal int literal to provide more than 32 bits. This means, in particular,
that the largest negative int cannot be represented as a decimal literal, because
“-2147483648” appearing in Java source code would be tokenized as the unary operator
- followed by a putative decimal literal 2147483648 , but 2147483648 is not a valid
decimal integer literal. Use the hexadecimal literal 0x80000000 instead.

Examples of int literals are:

0 2 0666 0xDadaCafe

The largest decimal literal of type long is 9223372036854775807L (2^63-1). The largest
positive octal and hexadecimal literals of type long are 0777777777777777777777L and
0x7fffffffffffffffL respectively; each represents 9223372036854775807L (2^63-1).
The most negative hexadecimal and octal literals of type long are 0xffffffffffffffffL
and 01777777777777777777777 , each of which represents the decimal value
-9223372036854775808 (-2^63). The most negative hexadecimal and octal literals of
type long are 0x8000000000000000L and 0400000000000000000000L respectively, each
of which represents the decimal value –9223372036854775808 (-2^63). The hexadecimal
and octal literals 0xffffffffffffffffL and 01777777777777777777777L each
represent the decimal value -1L .

It is a compile time error for a decimal literal of type int to be larger than 2^63-1 or for a
hexadecimal or octal long literal to provide more than 64 bits. This means, in particular,
that the largest negative long cannot be represented as a decimal literal, because
“-9223372036854775808L” appearing in Java source code would be tokenized as the
unary operator - followed by a putative decimal literal 9223372036854775808L , but
9223372036854775808L is not a valid decimal long integer literal. Use the hexadecimal
literal 0x8000000000000000 instead.

Examples of long literals are:

0l 0777L 0x100000000L 2147483648L

1.7.2 Floating-Point Literals

A floating-point literal has the following parts: a whole-number part, a decimal point, a
fractional part, an exponent, and a type suffix. The exponent, if present, is indicated by a
letter e or E followed by an optionally signed integer.

It is required to have at least one digit, in either the whole number or the fraction part, and
either a decimal point or an exponent. All other parts are optional.

October 30, 1995 The Java™ Language Specification—DRAFT 17

1 Lexical Structure

A floating-point literal is of type float if it is suffixed with a letter F or f ; otherwise its
type is double , and can optionally be suffixed with D or d.

FloatingPointLiteral :
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
. Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt

ExponentPart:
ExponentIndicator SignedIntegeropt

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f F d D

It is a compile-time error for a non-zero floating-point literal to be too large, so that on
rounded conversion to its internal representation it becomes an IEEE infinity, or nonzero
but too small, so that on rounded conversion to its internal representation it becomes a
zero.

The largest floating-point literal of type float is 3.40282347e+38f . The smallest
floating-point literal of type float is 1.40239846e-45f .

The largest floating-point literal of type double is 1.79769313486231570e+308 . The
smallest floating-point literal of type double is 4.94065645841246544e-324 .

Predefined constants representing the positive and negative infinities and Not-a-Number
(NaN) values of both float and double types are defined in the standard classes Float
and Double ; see §16.6.

Examples of float literals:

1e1f 2.f .3f 3.14f 6.02e+23f

Examples of double literals:

1e1 2 .3 3.14 1e-9d

1.7.3 Boolean Literals

The boolean type has two literal values: true and false .

BooleanLiteral: one of
true false

1.7.4 Character Literals

A literal of type char is expressed as a character or an escape sequence enclosed in single
quotes. The escape sequences allow for the representation of some non-graphic
characters as well as the single quote and the backslash in character and string literals.

1 Lexical Structure

18 The Java™ Language Specification—DRAFT October 30, 1995

CharacterLiteral:
’ SingleCharacter ’
’ Escape ’

SingleCharacter:
InputCharacter, but not ’ or \

Escape:
\ b // \u0008: backspace BS
\ t // \u0009: horizontal tab HT
\ n /* \u000a: linefeed LF */
\ f // \u000c: form feed FF
\ r /* \u000d: carriage return CR */
\ " // \u0022: double quote "
\ ’ // \u0027: single quote ’
\ \ // \u005c: backslash \
OctalEscape // \u0000 to \u00ff: from octal value

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

ZeroToThree: one of
0 1 2 3

Note that the characters CR and LF are never an InputCharacter: they are recognized as
constituting a LineTerminator.

It is a compile-time error for the character following the SingleCharacter or Escape to be
other than a ’ ; it is a compile-time error for a line terminator to appear after the first ’ and
before the closing ’ . Note that, because Unicode escapes are processed very early, it is not
correct to write ’\u000a’ for a character literal whose value is linefeed LF; the Unicode
escape \u000a is transformed into an actual linefeed in translation step 1(§1.1), and the
linefeed becomes a LineTerminator in step 2(§1.2), and so the character literal is not valid in
step 3. Instead, one should write ’\n’ . Similarly, it is not correct to write ’\u000d’ for a
character literal whose value is carriage return CR. Instead, one should write ’\r’ .

It is a compile-time error if the character following a backslash in an escape is not b, t , n, f ,
r , " , ’ , \ , 0, 1, 2, 3, 4, 5, 6, or 7. (Recall that the Unicode escape \u is processed very early;
see §1.1.)

Examples of char literals:

’a’ ’\t’ ’\\’ ’\u15e’

1.7.5 String Literals

A string literal is zero or more characters enclosed in double quotes, and may use the
escape sequences defined above:

StringLiteral:
" StringCharacters "

October 30, 1995 The Java™ Language Specification—DRAFT 19

1 Lexical Structure

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacter, but not " or \
Escape

It is a compile-time error for a line separator to appear after the first " and before the
closing " . In most situations a long string constant can be broken up into shorter pieces
and written as an expression using the string concatenation operator + (§9.12.2).

Each string literal is a reference to an instance of class String ; such literals cannot be
modified.

Examples of string literals:

"" // the empty string
"\"" // string containing " alone
"This is a string"
"This is a " + // actually a string-valued expression

"two-line string" // containing two string literals

1.8 Separators

The following characters are used in Java code as separators:

Separator: one of
() { } [] ; , .

1.9 Operators

The following characters and character combinations are defined as operators.

Operator: one of
= > < ! ~ ? :
== <= >= != && || ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

2 Types and Values

20 The Java™ Language Specification—DRAFT October 30, 1995

2 Types and Values

There are four kinds of data types in Java: class types, interface types, array types, and
primitive types. Every variable has an associated data type, sometimes called its
“compile-time type” because its type can always be determined by the compiler, before
the program is executed. There are two kinds of data values that can be stored in
variables, passed as arguments, returned as values, and operated upon: references and
primitive values. The value stored in a variable must be compatible with the compile-time
type of the variable.

Type:
PrimitiveType
ClassType
InterfaceType
ArrayType

References are “pointers” to dynamically allocated objects. There are two kinds of
dynamically allocated objects: class instances and arrays. Every object that is not an array
is an instance of some particular class; this class is sometimes called the “run-time type” of
the object. Every array also has a run-time type. If the value of a variable is a reference to
an object, then the run-time type of the object must be compatible with the compile-time
type of the variable.

There may be many references to the same object or to the same array. Objects may
contain state information in field variables belonging to the object. If two variables contain
references to the same object, it is possible to modify the state information through one
reference to the object and then observe the altered state through another reference.

Primitive values are indivisible and do not share state with other primitive values. A
variable whose (compile-time) type is a primitive type always holds a value of that exact
primitive type. Such a value is not shared in any way with any other variable, so the value
of the variable can be changed only by operations using that variable.

2.1 Primitive Types and Values

The primitive types available in every Java program are:

• the arithmetic types:
• the integral types:

• byte , whose values are 8-bit signed two’s-complement integers
• short , whose values are 16-bit signed two’s-complement integers
• int , whose values are 32-bit signed two’s-complement integers
• long , whose values are 64-bit signed two’s-complement integers

• the floating-point types:
• float , whose values are 32-bit IEEE 754 floating-point numbers
• double , whose values are 64-bit IEEE 754 floating-point numbers

• the character type char , whose values are 16-bit Unicode characters
• the boolean type, whose values are true and false

A primitive type is named by its reserved keyword:

PrimitiveType: one of
boolean char byte short int long float double

October 30, 1995 The Java™ Language Specification—DRAFT 21

2 Types and Values

2.1.1 Integral Types and Values

The primitive integral types are byte , short , int , and long , which are respectively 8-bit,
16-bit, 32-bit, and 64- bit signed two’s-complement integers, and char , which is a 16-bit
unsigned integer representing a Unicode code point.

The values of type byte are integers ranging from –256 to 255, inclusive.

The values of type short are integers ranging from –32768 to 32767, inclusive.

The values of type int are integers ranging from –2147483648 to 2147483647, inclusive.

The values of type long are integers ranging from –9223372036854775808 to
9223372036854775807, inclusive.

Any value of any integral type may be cast to any other arithmetic type.

Any value of any integral type may be cast to type char , and any character may be cast to
any integer type.

There are no casts between integer types and the type boolean .

Java provides a number of operators that act on integer values:

• the basic equality operators = and!=

• the relational operators <, <=, >, and >=

• the unary operators + and -

• the additive and multiplicative operators +, - , * , / , and %

• the prefix and postfix increment/decrement operators ++ and --

• the signed and unsigned shift operators <<, >>, and >>>

• the unary bitwise logical negation operator ~

• the binary bitwise logical operators &, | , and ^

If both operands are of integral type, the operation is considered an integer operation. If at
least one of the operands is of type long , then the operation is carried out using 64-bit
precision (any other operand that is not long is first widened, as if by a cast, to type long)
and the result, if not boolean , is of type long . Otherwise, the operation is carried out
using 32-bit precision (any other operand that is not int is first widened, as if by a cast, to
type int) and the result, if not boolean , is of type int .

Note that while the built-in operators listed above always widen their operands so as to
operate at 32-bit or 64-bit precision, values of integral type are not automatically widened
when used as arguments in method calls. Individual defined methods may be coded so as
to perform such widening, but the calling process itself does not do automatic widening.

The built-in integer operators produce only the low 32 bits or 64 bits of their two’s-
complement arithmetic result and do not indicate an overflow or underflow in any way.

Java throws an ArithmeticException if the right-hand operand to an integer divide
operator / or integer remainder operator % is zero; this is the only case where an exception
is generated by an operator on integral types.

2 Types and Values

22 The Java™ Language Specification—DRAFT October 30, 1995

2.1.2 Floating-Point Types and Values

The floating-point types are float and double , representing single-precision 32-bit and
double-precision 64-bit format IEEE 754 values and operations as specified in IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985 (IEEE, New York).

The floating-point value of type float , arranged from smallest to largest, are: negative
infinity, negative finite values, negative zero, positive zero, positive finite values and
positive infinity. There is also a special value Not-a-Number (NaN), which is used to
represent the result of certain operations such as dividing zero by zero; most operations
with NaN as an operand produce NaN as a result.

The finite nonzero values of type float are of the form , where s is +1 or –1, m is
a positive integer less than 2^24, and e is an integer between –149 and 104, inclusive.

The finite nonzero values of type double are of the form , where s is +1 or –1, m is
a positive integer less than 2^53, and e is an integer between –1045 and 1000, inclusive.

Positive zero and negative zero compare equal (0.0 == -0.0 produces the result true)
but there are other operations that can distinguish them; for example, 1.0/0.0 produces
positive infinity but 1.0/-0.0 produces negative infinity.

Any value of any floating-point type may be cast to any other arithmetic type.

Any value of any floating-point type may be cast to type char , and any character may be
cast to any floating-point type.

There are no casts between floating-point types and the type boolean .

Java provides a number of operators that act on floating-point values:

• the basic equality operators = and!=

• the relational operators <, <=, >, and >=

• the unary operators + and -

• the additive and multiplicative operators +, - , * , / , and %

• the prefix and postfix increment/decrement operators ++ and --

If both operands are of floating-point type, or if one operand is of floating-point type and
the other is of integral type, the operation is considered a floating-point operation. If at
least one of the operands is of type double , then the operation is carried out using 64-bit
floating-point arithmetic (any other operand that is not double is first cast to type double)
and the result, if not boolean , is of type double . Otherwise, the operation is carried out
using 32-bit floating-point arithmetic (any other operand that is not float is first cast to
type float) and the result, if not boolean , is of type float .

Operators on floating-point numbers behave exactly as specified by IEEE 754. Java
requires full support of IEEE 754 denormalized floating-point numbers.

Java requires that floating-point arithmetic behave as if every floating-point operator
rounds its floating-point result to the result precision. Inexact results must be rounded to
the nearest representable value; if two representable values are equally distant from the
true mathematical result of the operation, the result is the value whose least-significant bit
is 0. (This is the IEEE 754 “round to nearest”mode.) Note, however, that Java rounds
towards zero when casting a floating value to an integer.

Java floating-point arithmetic produces no exceptions. An operation that overflows
produce a signed infinity, an operation that underflows produce s a signed zero, and an

s m 2
e⋅ ⋅

s m 2
e⋅ ⋅

October 30, 1995 The Java™ Language Specification—DRAFT 23

2 Types and Values

operation that has no mathematically definite result produces NaN. Java uses gradual
underflow.

While the usual relational operations apply to IEEE floating-point numbers, the presence
of NaN can produce some surprises. NaN is unordered, so that the result of a <, <=, >, >=,
or == comparison between a NaN and another value is always false ; in particular, ==
produces false when both operands are NaN. The result of a != comparison with a NaN
is always true , even if the both operands are NaN.

2.1.3 Character Types and Values

2.1.4 Boolean Types and Values

The boolean type represents a 1-bit logical quantity with two possible values, indicated
by the literals true and false .

There are no casts defined to or from boolean . (Note, however, that an integer x can be
converted to a boolean, following the convention of the C programming language that
treats 0 as false and every nonzero value as true , by the expression x!=0 . Similarly, a
boolean value b can be converted to a zero/one integer value by the expression b?1:0 .)

Operations defined on boolean include the relational operators == and!= , the logical
operators ! , &, | , and ^ , and the short-circuit logical operators && and || . The control flow
in the if , while , do, and for statements, and which subexpression is to be chosen in the
conditional ? : operator, are controlled only by boolean truth values. For arithmetic
types, an explicit comparison to zero is needed to turn a zero/non-zero condition of the
value into a truth value; similarly, object references must be explicitly compared to null to
produce usable truth values for use in these places.

2.2 Reference Types and Values

A variable of reference type can hold a reference to any object whose run-time type can be
converted to the variable’s compile-time type by assignment conversion.

ClassType:
Name

InterfaceType:
Name

ArrayType:
Type []

2.2.1 Class Instances

Created by new, have fields (variables and methods)

2.2.2 Arrays

Created by new, have components, which are variables; can have arrays of arrays; ultimate
non-array components are elements; elements are variables whose type must be a class
type, interface type, or primitive type.

2 Types and Values

24 The Java™ Language Specification—DRAFT October 30, 1995

2.2.3 Class Types

Variables of class type can hold references to subclasses. Object can refer to arrays.

2.2.4 Array Types

Variables of array type can hold references to arrays.

2.2.5 Interface Types

Variables of interface type can hold references to objects that implement the interface.

2.3 Standard Default Values

No variable in a Java program ever has an undefined value.

When a variable (such as an instance variable or an array component) is first created and
no initial value is explicitly specified in the program, the variable is given the standard
default value for its type:

• For type byte , the standard default value is zero, that is, the value of (byte)0 .
• For type short , the standard default value is zero, that is, the value of (short)0 .
• For type int , the standard default value is zero, that is, 0.
• For type long , the standard default value is zero, that is, 0L.
• For type float , the standard default value is positive zero, that is, 0.0f .
• For type double , the standard default value is positive zero, that is, 0.0d .
• For type char , the standard default value is the null character, that is, ’\u0000’ .
• For type boolean , the standard default value is false .
• For all reference types, the standard default value is null .

Note, however, that the Java compiler goes to some trouble to detect programs that use
variables before they have been explicitly initialized or assigned. The automatic
initialization of variables to standard default values is required to guarantee portability of
Java code, but good Java programming style does not rely on it.

October 30, 1995 The Java™ Language Specification—DRAFT 25

3 Conversions

3 Conversions

In Java, there are four contexts for conversion: casting, assignment, method call, and
arithmetic promotion. Casting is the most general context; if a conversion is permitted at
all within Java, it can be achieved by casting. Assignment and method call allow only
certain conversions; however, assignment and method call allow the same subset of the
possible conversions, so it is convenient to speak of “assignment conversion” with the
understanding that it applies also to method calls.

Arithmetic promotion is not a general feature of Java, but is a property of the specific
definitions of the built-in arithmetic operations; there are two kinds of arithmetic
promotion: unary arithmetic promotion and binary arithmetic promotion. (The analogous
conversions in C are called “the usual unary conversions” and “the usual binary
conversions”.) Please note that not all binary operators perform the binary arithmetic
promotion.

Conversions never convert from a primitive value to a reference value or from a reference
value to a primitive value.

3.1 Conversions on Primitive Values

A value of any primitive type may be “converted” to that same type. Of course, this
results in no change to the value or its type.

The following type conversions are called widening conversions:

• byte to short , int , long , float , or double

• short to int , long , float , or double

• char to int , long , float , or double

• int to long , float , or double

• long to float or double

• float to double

Widening conversions do not lose information about the overall magnitude of a numeric
value. Indeed, integer-to-integer and float-to-float widening conversions do not lose any
information at all; the numeric value is preserved exactly. Conversion of an int or a long
value to float , or of a long value to double , may lose precision, that is, may lose some of
the least significant bits of the value; the resulting floating-point value will be a correctly
rounded version of the integer value, using IEEE 754 round-to-nearest mode.

According to this rule, a widening conversion of a signed integer to an integral type T
simply sign-extends the two’s-complement representation of the integer value to fill the
wider format. A widening conversion of a character to an integral type T zero-extends the
representation of the character value to fill the wider format.

The following type conversions are called narrowing conversions

• byte to char

• short to byte or char

• char to byte or short

• int to byte , short , or char

• long to byte , short , char , or int

• float to byte , short , char , int , or long

3 Conversions

26 The Java™ Language Specification—DRAFT October 30, 1995

• double to byte , short , char , int , long , or float

Narrowing conversions may lose information about the overall magnitude of a numeric
value.; they may also lose precision.

A narrowing conversion of a signed integer to an integral type T simply discards all but
the N lowest-order bits, where N is the number of bits used to represent type T. This may
cause the resulting value not to have the same sign as the input value.

A narrowing conversion of a character to an integral type T likewise simply discards all
but the N lowest-order bits, where N is the number of bits used to represent type T. This
may cause the resulting value not to have the same sign as the input value.

A narrowing conversion of a floating-point number to an integral type T first truncates the
floating-point value to an integer value (rounding toward zero). If this integer value can
be represented as a value of type T, then that is the result of the conversion. Otherwise the
value must be too small (a negative value of large magnitude) or too large (a positive
value of large magnitude). If it is too small, the result of the conversion is the smallest
representable value of type T; if it is too large, the result of the conversion is the largest
representable value of type T. If the floating-point number if NaN, the result of the
conversion is 0.

A narrowing conversion from double to float behaves in accordance with IEEE 754. The
result is correctly rounded using IEEE 754 round-to-nearest mode. A value of small
magnitude may be converted to zero (positive or negative); a value of large magnitude
may be converted to infinity (positive or negative); NaN is always converted to NaN.

A narrowing conversion of an integer to a floating-point type results in the closest
possible value in the target format. The result is correctly rounded using IEEE 754 round-
to-nearest mode.

Despite the fact that overflow, underflow, or loss of precision may occur, conversion
among primitive types never results in a run-time exception.

3.2 Conversions on Reference Values

An object reference whose run-time type is R can be converted to a class type C if and only
if R is C or a subclass of C.

An object reference whose run-time type is R can be converted to an interface type I if and
only if R implements I . (Remember that if a class implements an interface, all its
subclasses also automatically implement the interface, even if the subclass declarations do
not mention the interface explicitly.)

An array reference can be converted to a class type C if and only if C is the class Object .

An array reference whose run-time type is R[] (an array whose components have type R)
can be converted to an array type T[] (an array whose components have type T) if and
only if either R and T are the same primitive type or T is a reference type and R can be
converted to T.

3.3 Assignment Conversion

Assignment conversion, when applied to a variable and a value, converts the value to the
type of the variable. Assignment permits only certain conversions to take place, namely

October 30, 1995 The Java™ Language Specification—DRAFT 27

3 Conversions

those that require no run-time validity check and cannot lose information about numeric
magnitude.

If the value of an expression of some compile-time type can be converted to the type of
some variable, we say the expression (or its value) is assignable to the variable. If a type S
can be converted to type T by assignment conversion, we say that S is assignable to T.

A value of any compile-time type can always be assigned to a variable of that same type.
No conversion action need occur at run time, of course.

Consider this sequence of primitive types:

byte short int long float double

Assignment conversion can convert any type in this series to any type that appears to its
right. Furthermore, the same is true of this series:

char int long float double

Such conversions are performed at run time as described in

The type boolean cannot be assigned to any other type.

A value of primitive type must not be assigned to a variable of reference type; similarly, a
value of reference type must not be assigned to a variable of primitive type.

Assignment of a value of reference type to a variable of reference type requires no
conversion action at run time. The basic principle is that the compiler must be able to
prove from the compile-time type of the value that it can always be converted to the type
of the variable. The detailed rules for assignment conversion of reference types are shown
in Table 1.

3.4 Casting Conversion

Casting conversions are more general than assignment conversions. If a conversion is
possible at all, a cast can do it.

T is a class that
is not final

T is a class that
is final

T is an
interface

T = B[] , an array with
components of type B

S is a class that
is not final

T must be a
subclass of S

T must be a
subclass of S

compile-time
error

S must be Object

S is a class that
is final

T must be the
same class as S

T must be the
same class as S

compile-time
error

compile-time
error

S is an
interface

T must implement
interface S

T must implement
interface S

T must be a
subinterface of S

compile-time
error

S = A[] , an array with
components of type A

compile-time
error

compile-time
error

compile-time
error

either A and B are the
same primitive type, or
A is a reference type and
B can be assigned to A

Table 1. Rules for permitted assignment conversion when assigning a
reference value of type T to a variable of type S

3 Conversions

28 The Java™ Language Specification—DRAFT October 30, 1995

A value of any compile-time type can always be cast to that same type. Such a cast has no
run-time effect, of course, and serves only to indicate explicitly that the resulting value
will be of the indicated type.

Casting can convert a value of any arithmetic type to any other arithmetic type.

The type boolean cannot be cast to any other type.

A value of primitive type cannot be cast to a reference type; similarly, a value of reference
type cannot be cast to a primitive type.

Casting of a value of reference type to a variable of reference type may require a run-time
validity check. The basic principle is that if the compiler is able to prove from the compile-
time type of the value that it can always be converted to the type of the variable (that is,
that assignment conversion applies), then no run-time check is required; otherwise,
execution of the cast operator must verify at run time that the run-time type is compatible
with the type of the variable (and if it is not compatible, an exception is thrown).

Some casts can be proven incorrect at compile time; such casts result in a compile-time
error. The detailed rules for compile-time correctness of casting conversions on reference
types are shown in Table 1.

3.5 Unary Arithmetic Promotion

When an operator applies unary arithmetic promotion to a single operand, the following
rules apply, in order:

• If the operand is of type byte or short , it is converted to int .
• Otherwise it remains as is and is not converted.

3.6 Binary Arithmetic Promotion

When an operator applies binary arithmetic promotion to a pair of operands, the
following rules apply, in order:

• If either operand is of type double , the other is converted to double .

T is a class that
is not final

T is a class that
is final

T is an
interface

T = B[] , an array with
components of type B

S is a class that
is not final

T must be a
subclass of S,
or S of T

T must be a
subclass of S

always correct at
compile time

S must be Object

S is a class that
is final

S must be a
subclass of T

T must be the
same class as S

S must implement
interface T

compile-time
error

S is an
interface

always correct at
compile time

T must implement
interface S

always correct at
compile time

compile-time
error

S = A[] , an array with
components of type A

T must be Object compile-time
error

compile-time
error

either A and B are the
same primitive type, or
A is a reference type and
B can be cast to A

Table 2. Rules for permitted casting conversion when casting a reference value
of type T to type S

October 30, 1995 The Java™ Language Specification—DRAFT 29

3 Conversions

• Otherwise, if either operand is of type float , the other is converted to float .
• Otherwise, if either operand is of type long , the other is converted to long .
• Otherwise, both operands are converted to type int .

4 Names and Variables

30 The Java™ Language Specification—DRAFT October 30, 1995

4 Names and Variables

4.1 Names

A name is an identifier that has been given meaning in a program by a declaration. A
name denotes either:

• a package, which is introduced by a package statement (§5.1),
• a type, which is introduced by a class or interface declaration (§6),
• a field, which is a variable in a class or interface type (§6.2),
• a group of methods of a class or interface type (§6.4),
• a variable that is a formal parameter of a method (§6.6.4),
• a variable that is local to a block (§8.2), or
• a statement label (§8.5).

An expression is also said to have a denotation (§9.1), and can denote everything a name
can denote as well as:

• a directory that is part of a package name,
• an array type,
• a value of a primitive type,
• a variable that is an element of an array,
• a reference to an object, or
• null , which is a reference to no object.

If a name or expression denotes a variable or a value of a primitive type, then the type of
that variable or primitive value is called the type of the name or the expression.

4.2 Variables: Values and References

A variable is a typed storage location. A variable contains either a value of a primitive
type (§1.7), (§3), or a reference to an object. An object is an instance of a class type (§6) or
an instance of an array type (§7).

Variables have two main attributes: their type and their storage class(§4.3).

A variable’s type is either a primitive type or an object type. An object type may be a class
type, an interface type, or an array type.

A variable must always contain a value consistent with its type; in fact, Java is so designed
that it is impossible for a variable to take on a value inconsistent with its type.

4.3 Storage Classes

The storage class determines the lifetime of a variable.

Local variables are declared and allocated within a block and are discarded on exit from
the block. Method parameters are considered local variables.

Static variables are local to a class; they are allocated when the class is loaded and
discarded when the class is unloaded.

Dynamic objects are instances of classes and arrays. They are allocated by the new
expression (§9.8) and may be referenced by more than one variable. Automatic storage

October 30, 1995 The Java™ Language Specification—DRAFT 31

4 Names and Variables

management techniques, such as garbage collection, are used to reclaim the storage used
by dynamic objects. A class may declare a finalize method(§6.6) that will be called just
before an instance of that class is discarded.

4.4 Name Spaces

Each name declared in a program is defined at a lexical level, and becomes part of a name
space at that level. The name spaces in a Java program lexically nest as follows:

MCMANIS SUGGESTS DROPPING HOST FROM HOST SYSTEM. THINKS THIS
SECTION IS MUDDY. HE SUGGESTS GETTING RID OF "HOST SYSTEM" AND
CLEANING UP ACCESS CONTROL AT THIS LEVEL

0. Host system’s package name space
1. A compilation unit’s name space

2. A type’s name space
3. A method’s parameter name space

4. A local block’s name space
5. A nested local block or for ’s name space

...

The name spaces thus differ in the kinds of declarations they contain:

• a compilation unit’s name space contains the type names declared in all
compilation units of the package it belongs to and any package names or type
names that are imported (§5.4),

• a type’s name space contains its declared fields as well as any field names
inherited from superclasses and interfaces (X.X),

• a method’s parameter name space contains the formal parameters of the
method(§6.4),

• a local block’s name space contains local variables and labels declared in the
block, and

• a for statement’s name space contains any local variables declared in the
initialization part of the for statement (§8.8.3).

Names introduced by import statements and local variable declarations must be declared
before they are used. All other names are known throughout the name space in which
they appear.

The host system package name space consists of the first component of the names of all of
the packages that are available on the host system. It:

• always contains the java package name, used internally by the Java system,
• usually contain several all-upper-case ISO-LATIN-1 package names such as

COM, EDU and FR; such names are reserved to be the first component of global
package names, and should not otherwise be used,

• usually contains local packages whose initial names are not all upper-case ISO-
LATIN-1 letters, which represent locally developed packages, and any other
packages that have not been given globally unique names.

4.5 Name Resolution

When a name occurs in a Java program it is resolved by looking successively in the
namespaces of each lexical level, looking from the highest nesting level to the lowest.
Only the first match is considered.

4 Names and Variables

32 The Java™ Language Specification—DRAFT October 30, 1995

**** Need a discussion of ambiguity when looking up field names; this can occur when the
field variable appears in more than one interface, for example.

Let F be the class or interface whose definition contains the declaration of a field variable.
Access to the field is controlled as follows:

• If F is the same as the class or interface in whose body the field access expression
appears, then the access is allowed.

• Otherwise, if F is a class (not an interface) that is a superclass of the class in whose
body the field access expression appears, then access is allowed only if the field is
declared to be protected or public .

• Otherwise, if F is defined in the same package as the class or interface in whose
body the field access expression appears, then the field access is allowed unless
the field is declared private .

• Otherwise, the field access is allowed only if the field is declared public .

If a field access is not allowed, a compile-time error results.

4.6 External Access

Name may be used from outside the scope of their declaration as follows:

• for package names: if the host system permits access.
• for type names declared in a different package: if the host system permits access

to the package and the type is declared public (§6.1.1), (§9.6).
• for field names in the same package: if the field is not declared private

• for field names in a different package: if the host system permits access to the
package, the type is declared public (§6.1.1), and either
• the field is declared public (§9.6), or
• the field is declared protected (§4.6) and the use is from within the

declaration of a subclass of the said type.

Access control is determined by the compile-time (static) types of objects. A subclass may
not be declared public , yet may be available outside the package where it is declared if it
has a public superclass, since it can, for example, be assigned to a variable of this public
type. Invocation of a public method of this variable’s declared (compile-time) type may
invoke a method of the (non-public) subclass if this method overrode(§6.4.1) a method of
the public superclass(§9.7).

4.7 Rules about Names

If it denotes a declared entity the entity is either:

• a package,
• a type (which is either a class or an interface),
• a field variable, which is either final or not and static or not,
• a set of fields which are a group of one or more methods with the same name,
• a variable which is an argument of a method,
• a local variable which is either final or not, or a
• statement label.

If it denotes an undeclared entity it is either:

October 30, 1995 The Java™ Language Specification—DRAFT 33

4 Names and Variables

• a directory which are part of a package name, and which may contain further
directories and/or a package,

• a value of a primitive type, either a integer value of type byte , short , int , or
long , a floating-point value of type float or double , where the integer and
floating-point type are collectively called arithmetic types, a boolean value of
true or false , or a char value which is a Unicode character (note that char is not
an arithmetic type),

• an assignable variable including elements of arrays,
• a reference to an object, which is known to be an instance of a specific class, or of

one of this classes subclasses,
• a reference to an object, which is known to be an instance of some class

supporting a specific interface,
• a reference to an object which is known to be an array of some type T,
• null , which is a reference to no object, or
• void , which is the result of a method which returns no value.

5 Program Structure

34 The Java™ Language Specification—DRAFT October 30, 1995

5 Program Structure

5.1 Packages and Directories

Java source code is organized into package s that have hierarchical names.

Each component of a package name is an identifier. In a typical Java implementation,
package name components may be identified with directory names in a hierarchical file
system, wherein each directory can contain zero or more subdirectories and/or the
compilation units of a single package.

PackageName:
PackageNameComponent
PackageName . PackageNameComponent

PackageNameComponent:
Identifier

5.2 Globally Unique Package Names

Java packages that are to be widely used should be given globally unique package names.
This will allow them to be easily installed and catalogued. Java specifies a convention for
generating globally unique package names.

You form a globally unique name by first having (or belonging to an organization that
has) an Internet Domain Name, such as Sun.COM. You then reverse this name, component
by component, to obtain, in this example, COM.Sun, and use this as a prefix for your
package names, using a convention developed within your organization to further
administer package names. Such a convention might specify that certain directory name
components be division, department, project, machine, or login names. Some possible
examples::

COM.Sun.sunsoft.DOE
COM.Sun.java.jag.scrabble
COM.Apple.quicktime.v2
EDU.cmu.cs.bovik.cheese
GOV.whitehouse.socks.mousefinder

The first component of a unique name is always written in all-uppercase ASCII letters and
should be COM, EDU, GOV, MIL , NET, ORG, or one of the English two-letter codes identifying
countries as specified in ISO Standard 3166, 1981. For more information, refer to the
documents stored at ftp://rs.internic.net/rfc , for example rfc920.txt and
rfc1032.txt .

Package names whose first component does not consist entirely of uppercase ASCII letters
are reserved for local use, with the sole exception of the predefined portions of the Java
language and system, which use the name java .

If you need to get a new Internet Domain Name, you can get an application form from
ftp://ftp.internic.net and submit the complete forms to domreg@internic.net . If
you want to check what the currently registered domain names are, you can telnet to
rs.internic.net and use the whois facility.

October 30, 1995 The Java™ Language Specification—DRAFT 35

5 Program Structure

5.3 Locating Packages on a Host System

In a typical hosted implementation of Java package names are transformed into a
pathname, by concatenating the components of the package name, placing a file name
separator between them.

Thus on UNIX systems, where the file name separator is / , the package name:

jag.fun.scrabble

is transformed to the directory name:

jag/fun/scrabble

and

COM.Sun.sunsoft.DOE

is mapped to the directory name:

COM/Sun/sunsoft/DOE

On UNIX, the CLASSPATH environment variable then provides a list of directories that
provide roots for a search for a directory with this name.

If a package name component or class name contains a character which may not appear in
a host file system’s ordinary directory name, for example a Unicode character on a system
which has only ASCII file names, then the character should be escaped by using a @
character followed by one to four hexadecimal digits giving the Unicode code point of the
escaped character, as in the \uxxxx escape (§1.1), so that:

COM.Sun.java.java2\u23b

is mapped to the directory name:

COM/Sun/java/java2@23b

5.4 Compilation Units

Each package consists of a number of compilation units.

CompilationUnit :
PackageStatementopt ImportStatementsopt TypeDeclarationsopt

PackageStatement:
package PackageName ;

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

If a compilation unit has no package statement, the unit is placed in a default package,
which has no name. This is used on many systems to easily write fragments of Java code
in the current directory in the file system.

A compilation unit declares zero or more types, at most one of which is declared public .
This restriction makes it easy for the compiler and runtime system to find a named class
within a package: if a type is public , its source code for its type bar would typically be

5 Program Structure

36 The Java™ Language Specification—DRAFT October 30, 1995

found in a file bar.java , and the object code for the Java Virtual Machine in the file
bar.class .

5.5 Compilation Unit Name Space

A compilation unit creates a name space which contains imported type names, imported
package names, and all the type names declared in all the compilation units of the
package. The imported and declared names must all be distinct.

5.6 Standard Imports

Each compilation unit automatically imports each of the type names defined in the
predefined package java.lang , such as Int , Float , Object , String , and
NullPointerException . The full specification of java.lang is given in §16.

5.7 The Import Statement

An import statement causes an name to denote a package or type which is declared
elsewhere:

ImportStatement:
PackageImportStatement
TypeImportStatement
TypeImportOnDemandStatement

PackageImportStatement:
import PackageName

TypeImportStatement:
import PackageName . Identifier ;

TypeImportOnDemandStatement:
import PackageName . * ;

A package import statement causes the named package to be known by the name of its
last component. So after:

import java.io;

the types in java.io are known both as io. name and as java.io. name.

A type import statement causes the single public type from the named package to be
available, thus

import java.util.Vector;

causes the name Vector to be interchangeable with the full name java.util.Vector .

It is a compile-time error for either a package or a type import to attempt to declare a
name which is already declared by another import or as a type name in this package.

A type import on demand statement causes public types declared in the named package
to be made ready to be imported as needed. Whenever Java is looking up a name in a
package name space and the name is not found Java will look to see if the name is
declared and public in a type imported by a type import on demand statement, and
automatically import the name to the compilation unit’s name space if it is found there.

It is a compile-time error for an undefined type name to be used and then found to be
declared public in two or more packages which are being imported on demand.

October 30, 1995 The Java™ Language Specification—DRAFT 37

5 Program Structure

The Java compiler and run-time keep track of packages and types within packages by
their true names and are not fooled by having multiple ways of naming packages as
introduced by import .

6 Class and Interface Type Declarations

38 The Java™ Language Specification—DRAFT October 30, 1995

6 Class and Interface Type Declarations

A class declaration introduces a new reference type with an implementation that is
derived from the implementation of another class called its immediate superclass; we say
that a class extends its immediate superclass because it may provide additional
implementation details. The single implementation inheritance Java provides for classes
supports code reuse. Every object is an instance of some class.

The superclass relationship is the reflexive transitive closure of the immediate superclass
relationship. Thus class A is a superclass of class C if and only if at least one of the
following is true:

• A is the same as C.

• A is the immediate superclass of C.

• There is some class B such that A is a superclass of B and B is a superclass of C.

Class A is a proper superclass of class B if and only if A is a superclass of B but is not B.

Class B is an immediate subclass of class A if and only if class A is the immediate superclass
of class B. Class B is a subclass of class A if and only if class A is a superclass of class B. Class
B is a proper subclass of class A if and only if class A is a proper superclass of class B.

A variable whose declared type is a class type C may have as its value a reference to an
object that is an instance of C or of any subclass of C.

An interface declaration introduces a new reference type that specifies a set of method
signatures and some associated named constants, but does not specify an implementation.
An interface may be declared to be an immediate extension of one or more other interfaces,
meaning that it implicitly specifies all the method signatures and named constants of the
interfaces it extends, perhaps adding method signatures or named constants of its own.

The extension relationship is the reflexive transitive closure of the immediate extension
relationship. Thus interface K is an extension of interface I if and only if at least one of the
following is true:

• K is the same as I .
• K is an immediate extension of I .
• There is some class J such that K is an extension of J and J is an extension of I .

Interface K is a proper extension of interface I if and only if K is a extension of I but is not I .

A class may be declared to implement one or more interfaces, meaning that any instance of
the class implements all the method signatures specified by the interface. This (multiple)
interface inheritance allows objects to support (multiple) common behaviors without
sharing any implementation. If a class is declared to implement an interface, then all its
subclasses (including the class itself) are implicitly considered to be declared to
implement all interfaces (including the interface itself) of which that interface is an
extension

A variable whose declared type is an interface type may have as its value a reference to an
object that is an instance of any class that is declared to implement the specified interface.
(It is not sufficient that the class happen to implement all the method signatures specified
by the interface; the class or one of its superclasses must actually be declared to
implement the interface.)

October 30, 1995 The Java™ Language Specification—DRAFT 39

6 Class and Interface Type Declarations

6.1 Class Declarations

A class declaration introduces a new reference type and specifies part or all of its
implementation.

ClassDeclaration:
ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier is the name of the class; the fully qualified name of the class is P. Identifier
where P is the fully qualified name of the package of the compilation unit in which the
class is declared. The class declaration has a body that may contain field definitions. A
class declaration may optionally have modifiers, specify its immediate superclass, and
specify interfaces that it implements.

6.1.1 Class Modifiers

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
abstract final public

A class that is declared abstract may have abstract methods (§6.6.2). It is a compile-
time error for a class containing an abstract method not to be declared abstract .

It is impossible to create an instance of an abstract class: you cannot create an instance of
an abstract class with new (§9.8) or with the newInstance method of class Class (§16.1).

A class that is declared final can have no immediate subclasses, and therefore no proper
subclasses, because it may not appear in the extends clause of another class declaration.

A class that is declared public can be accessed from other packages, either directly (§4.6)
or in an import statement (§5.7). If a class lacks the public modifier, use of the class is
limited to the package in which it is declared. At most one public class may be declared in
each compilation unit (§5.4). A compilation unit may not contain both a public class and a
public interface.

It is a compile-time error for a class to be declared both final and abstract .

6.1.2 Superclass Specification

The optional extends clause specifies the immediate superclass of the class being
declared.

Super:
extends TypeName

The TypeName must name an accessible class that is not final . If the extends clause is
omitted from a class declaration, then the class has the class Object (§16.1) as its
immediate superclass. (Thus all classes are ultimately derived from this single root class,
Object , forming a class hierarchy.)

It is a compile-time error for there to be a circularity that causes a class to directly or
indirectly extend itself. For example, it is not permitted for A to be the immediate
superclass of B and for B also to be a superclass of A.

6 Class and Interface Type Declarations

40 The Java™ Language Specification—DRAFT October 30, 1995

6.1.3 Implemented Interfaces

The optional implements clause lists interfaces implemented by the class being declared.

Interfaces:
implements TypeNameList

If the class C being declared is not abstract , every method signature that is declared in
any of these interfaces must be defined by some superclass of C (possibly C itself).

6.1.4 Class Body

The class body consists of a (possibly empty) list of field declarations:

ClassBody:
{ FieldDeclarationsopt }

FieldDeclarations:
FieldDeclaration
FieldDeclarations FieldDeclaration

Field declarations introduce new variables and methods to the class; some special
methods are called constructors.

6.1.5 Class Name Space

A class introduces a new name space, built from inherited and declared field names.

The class inherits from its immediate superclass all the field declarations in the name
space of the superclass, except that:

• Fields that are declared private are not inherited.
• Constructors are not inherited.
• If a name is declared as a field variable in the class being declared, no field

variable of the same name is inherited from the superclass; a field variable
declaration is said to shadow any field variable declaration in a superclass. This
means the scoping rules for variables are different from the scoping rules for
methods, because variables are shadowed rather than overridden (§6.4.9).

To these inherited fields are added the newly declared field declarations of the class itself.

6.1.6 Multiple Declarations of a Single Name

A variable may have the same name as a variable in the name space of its superclass, in
which case the variable in the namespace of the superclass is not inherited but is said to be
shadowed. (The shadowed variable can be accessed using the keyword super (§6.4.6)
(§9.4) or the superclass’s type name in a field access expression (§9.6).)

It is a compile-time error for a class to declare a method with the same name as a declared
or inherited variable.

It is a compile-time error for a class to declare a variable to have the same name as a
declared or inherited method.

It is a compile-time error for a class to declare two or more variables with the same name.

October 30, 1995 The Java™ Language Specification—DRAFT 41

6 Class and Interface Type Declarations

It is a compile-time error to declare two methods with the same name that take the same
number of arguments and take the same declared type of argument in each argument
position. More than one method with the same name may be declared, provided that, for
any two methods of the same name, they either accept different numbers of arguments or
take arguments of different declared type in at least one argument position. (Such
polymorphism is called method overloading and is described in (§6.4.8).)

It is a compile-time error to declare two constructors that take the same number of
arguments and take the same declared type of argument in each argument position. More
than one constructor may be declared, provided that, for any two of the constructors, they
either accept different numbers of arguments or take arguments of different declared type
in at least one argument position. (Such polymorphism is called constructor overloading
and is described in (§6.4.8).)

6.1.7 Visibility of Field and Class Names

Every field name is visible throughout the body of the class C in which the field is
declared. It is also visible throughout the body of every subclass of C that inherits the
name of the field (§6.1.5).

Every class type name is visible throughout the compilation unit in which the class is
declared.

As an example, the following code is all correct:

class A {
void a() {

f.set(42); // forward reference to f is okay
}
B f; // forward reference to B is okay

}

class B {
void set(long n) {

this.n = n; // See text below
}
long n;

}

In the assignment this.n = n; the first occurrence of n (after this.) is, in effect, a
forward reference to the field named n declared two lines later; the second occurrence of n
refers to the method parameter declared one line before the assignment.

6.2 Field Declarations

Fields are variables and methods. Constructors are methods of a special kind. Static
initializers are used along with the initializers in the declarators of static field variables to
define an implicit static class initialization method.

FieldDeclaration =
FieldVariableDeclaration
MethodDeclaration
ConstructorDeclaration
StaticInitializer

6 Class and Interface Type Declarations

42 The Java™ Language Specification—DRAFT October 30, 1995

6.2.1 Field Access

Every field other than a static initializer may be declared to be public , protected , or
private to control access to the declared entity. (This control allows the programmer to
hide details of the implementation of an abstraction from the users of the abstraction.)

A public field is accessible anywhere the class name is accessible.

A protected field is throughout the package that contains the class in which the field is
declared, and is also also accessible (unless shadowed) within the body of any subclass of
that class.

A private field is accessible only within the class body in which the field is declared.

If none of the keywords public , protected , or private is specified, the field is
throughout the package that contains the class in which the field is declared but is not
accessible within the body of any subclass of that class if the subclass is declared in
another package.

It is a compile-time error to mention more than one of public , protected , or private in
a single field declaration. It is a compile-time error to mention the same modifier more
than once in a single field declaration.

6.3 Variable Declarations

FieldVariableDeclaration:
VariableModifiersopt Type VariableDeclarators

More than one field variable may be declared in a single field variable declaration by
writing more than one declarator. The specified Type (§2) and modifiers apply to all the
declarators in the declaration.

6.3.1 Variable Modifiers

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
public protected private
static final transient volatile

The field access modifiers public , protected , and private are discussed in (§6.2.1).

A field variable that is not declared static is called an instance variable; there is actually
a distinct variable known by that name associated with every instance of the class or its
subclasses. Whenever a new instance of a class is allocated, a new variable associated with
that instance is created for every field variable declared in that class or any of its
superclasses. (Note that this is true even of shadowed field variables; a new variable is
created and can be accessed, though not simply by its name alone.)

If a field variable is declared static , there is exactly one variable of that name, no matter
how many instances (possibly zero) of the class are created. A static field variable is
sometimes called a class variable because it is regarded as belonging to the class itself
rather than to instances of the class.

A variable declared final must be assigned a value by including a variable initializer in
its declarator. Any other attempt to assign to the variable results in a compile-time error.

October 30, 1995 The Java™ Language Specification—DRAFT 43

6 Class and Interface Type Declarations

Variables may be marked transient to indicate to low-level parts of the Java virtual
machine that they are not part of the persistent state of an object. The transient attribute
will to be used to implement some functions in later versions of the Java system. It is a
compile-time error if a transient variable is also declared final or static .

A variable declared volatile is known to be modified asynchronously. The compiler
arranges to use such variables carefully so that unsynchronized accesses to volatile
variables are observed in some global total order. This means that variables which are
declared volatile are reloaded from and stored to memory at each use, in a way that is
coherent throughout a multiprocessor.

6.3.2 Variable Declarators

VariableDeclarator:
DeclaratorName
DeclaratorName = VariableInitializer

DeclaratorName:
Identifier
DeclaratorName []

6.3.3 Variable Initializers

VariableInitializer:
Expression
{ ArrayInitializersopt , opt }

ArrayInitializers:
VariableInitializer
ArrayInitializers ,

If a variable declarator contains a variable initializer, then it behaves exactly as if it were
an assignment (§9.20) to the declared variable. See also §7.3, which describes the treatment
of array initializers.

If the declarator is for a static field variable, the variable initializer is computed and the
assignment performed once, when the class is loaded (§6.7).

If the declarator is for an instance variable, the variable initializer is computed and the
assignment performed as part of the execution of certain constructors for the class in
which the instance variable is declared (§6.5.4).

If the declarator is for a local variable, the variable initializer is computed and the
assignment performed as part of the execution of the variable declaration statement.

Examples of variable declarations:

int x, y;
float z = 1.0;
java.lang.String foo = "foo";
Object o = foo;
Exception e = new Exception();
double trouble[] = new double[27];

6 Class and Interface Type Declarations

44 The Java™ Language Specification—DRAFT October 30, 1995

6.4 Method Declarations

A method is a chunk of executable code that can be invoked, possibly passing it certain
values as arguments. Every method definition belongs to some class and must appear
within the body of the class definition.

MethodDeclaration:
MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

6.4.1 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private
static
abstract final native synchronized

The field access modifiers public , protected , and private are discussed in (§6.2.1).

A method that is not declared static is called an instance method. Such a method can be
invoked only relative to some particular object that is an instance of the method’s class or
one of its subclasses.

A method that is declared static is sometimes called a class method because it is
regarded as belonging to the class itself rather than operating within instances of the class.
A static method may refer to other fields and methods of the class by name only if they
are also static .

Every static method is implicitly final . It is permitted but not required for the modifier
final to appear redundantly along with the modifier static in a method declaration.
Note that because every static method is implicitly final , it is not possible to override a
static method.

Methods which are static are called class methods. Restrictions on static methods:

• Static methods can refer to other fields and methods of the class only if they are
also static .

• A static method is implicitly final , so no overriding occurs on static
methods.

A method can be declared abstract , in which case no implementation is provided for the
method. The method declaration contains no body (a semicolon appears instead of a
block). The declaration of an abstract method (call it m) must appear within an
abstract class (call it A); otherwise a compile-time error results. Such a declaration
merely defines the calling signature and return type for m. Every subclass of A that is not
abstract must provide an implementation for m. To be precise, for every subclass C of the
abstract class A, if C is not abstract then there must be some class B such that (1) B is a
superclass of C (possibly C itself); (2) B is a subclass of A; (3) B is not abstract ; and (4) B
overrides m, thereby providing an implementation for m visible to C.

A private method cannot also be declared abstract (it is impossible to override a
private method, so such a method could never be used).

A static method cannot also be declared abstract (a static method is implicitly final, so
it is impossible to override a private method, so such a method could never be used).

October 30, 1995 The Java™ Language Specification—DRAFT 45

6 Class and Interface Type Declarations

A method that is declared final cannot be overridden; it is a compile-time error to
attempt to override a final method. A private method is effectively final , even if not
explicitly declared final , as are all methods declared in a final class, even if the
methods are not explicitly declared final . In both these cases, it s permitted but not
required for the modifier final to appear redundantly in such a method declaration.
Note that if a method is final or effectively final , an optimizing compiler may be able to
“inline” the method, that is, replace a call to the method with the code in its body.

A method can be declared native , in which case the method is implemented in a
platform-dependent way, for example, in C or assembly language. Because the
implmentation is not provided by Java Language code, the method declaration contains
no body (a semicolon appears instead of a block). Native methods are otherwise like
normal Java methods; they are inherited, may be static or not, may be final or not,
may override or be overridden by non-native methods, and so on.

A synchronized method will acquire a monitor lock before it executes; the lock is per
class if the method is static , per object otherwise.

6.4.2 Result Type

A method declaration either specifies the type of value that the method returns or uses the
keyword void to indicate that the method does not return a value.

A method that returns an array may be declared with the empty bracket pairs preceding
the method name (as part of the result type) or following the argument list (as would be
expected by a programmer accustomed to the declarator syntax of the C programming
language), or with some bracket pairs in each place (cf. §7.2).

ResultType:
Type
void

MethodDeclarator:
DeclaratorName (ParameterListopt)
MethodDeclarator []

6.4.3 Parameter List

The formal parameters of a method, if any, are specified by a list of comma-separated
parameter specifiers. Each parameter specifier consists of a type and a name; as in other
places in the Java Language, if the the type of the parameter is to be an array type, the
empty bracket pairs may appear preceding the name (as part of the type specifier) or
following the parameter name (as would be expected by a programmer accustomed to the
declarator syntax of the C programming language), or with some bracket pairs in each
place (cf. §7.2).

If a method has no parameters, only an empty pair of parentheses appears in the method
declaration.

ParameterList:
Parameter
ParameterList , Parameter

Parameter:
Type DeclaratorName

6 Class and Interface Type Declarations

46 The Java™ Language Specification—DRAFT October 30, 1995

DeclaratorName:
Identifier
DeclaratorName []

The parameters are local variables of the method, in the method name space, but declared
outside the method’s body.When the method is called, these local variables are freshly
instantiated for the call; the values of the actual argument expressions are assigned to the
fresh parameter variables before execution of the body of the method.

6.4.4 Throws

A method must declare any normal exceptions that can result from its execution:

Throws:
throws TypeNameList

TypeNameList:
TypeName
TypeNameList , TypeName

If a method declaration contains a throws clause, it is a compile-time error if an exception
can be thrown from the body of the method whose compile-time type is not assignable
(§3.3) to either Error , RunTimeException , or one of the types mentioned in the throws
clause. It is a compile-time error if any name in the throws clause does not name an
accessible type that is a assignable to the type Throwable (perhaps Throwable itself).

If a method declaration does not contain a throws clause, it is a compile-time error if a
normal exception can be thrown from the body of the method.

A method that overrides another method may not be declared to throw more exceptions
than the overridden method. More precisely, if B is a subclass of A, a method declaration
in B overrides a method declaration in A, and B has a throws clause, then

6.4.5 The Body of a Method

MethodBody:
Block
;

If a method is abstract or native , then its MethodBody must be a semicolon.

In all other cases, the MethodBody must be a block. If the method that is not abstract or
native needs no executable code, then an empty block { } should be used.

6.4.6 Usingthis , super and Superclass Type Names

Within the definition of an instance method, (one that is not static), the keyword this
represents the current object. For example, an object may need to pass itself as an
argument to another object’s method:

class MyClass extends {
void aMethod(OtherClass obj) {

...
obj.Method(this);
...

}
}

October 30, 1995 The Java™ Language Specification—DRAFT 47

6 Class and Interface Type Declarations

The this keyword is a reference to the current object; its type is the class containing the
currently executing method.

Anytime a method refers to its own instance variables or methods, an implicit “this. ” is
in front of each reference:

class Foo {
int a;
...

}
class Bar extends Foo {

int a, b, c;
 ...

void myPrint() {
print(a + "\n"); // a == "this.a"
print(super.a); // Foo’s a
print(Foo.a); // also Foo’s a

}
...

}

The super keyword is a reference to the superclass, i.e. equivalent to ((Foo)this) in the
example above.

A superclass’s name may be used in a field access expression (§9.6) to access the
superclass’s fields and methods, usually because they are hidden or overridden.

6.4.7 Using Superclass Names

The names of the superclasses of the current type may also be used to access instance
(non-static) methods and variables:

class A {
Object x;

}
class B extends A {

float x;
}
class C extends B {

char x;
void m() {

char cx = x; // C’s x is a char
float bx = B.x; // B’s x is a float

// ... super.x would also work here
Object ax = A.x; // A’s x is a object

}
}

6.4.8 Method Overloading

Java allows overloading (polymorphic) method declarations: there can be more than one
method with the same name visible within a class provided the methods differ in the
number of parameters or in the types of the parameters.

When a method is to be called, the number of actual arguments and the compile-time
types of the actual arguments are used at compile time to determine which method
definition will actually be invoked. If there is a possibility that the method may be
overridden, a dynamic method dispatch may also be used at run time. See §9.7 for a
complete description of compile-time method selection and run-time dispatch.

6 Class and Interface Type Declarations

48 The Java™ Language Specification—DRAFT October 30, 1995

6.4.9 Method Overriding

Java allows overriding method declarations: a class may inherit from one of its
superclasses a method with a certain name and a certain number of parameters with
certain types and yet also declare a method of the same name with the same number of
parameters, with corresponding parameters having the same type.

The access modifier of the overriding method must provide at least as much access as the
overridden method:

• If the declaration of the overridden method does not contain any of the modifiers
public , protected , or private , then the overriding method must not be
private .

• If the overridden method is protected , then the overriding method must be
public or protected .

• If the overridden method is public , then the overriding method must be public .

The return type of an overriding method must be assignable (§3.3) to the return type of
the overridden method.

An overridden method can be invoked within a class containing the overriding method
by using the super keyword in a method call:

setThermostat(...) // refers to the overriding method
super.setThermostat(...) // refers to the overridden method

This example is incomplete... it should also talk about using the superclass type name to
get around the override.

A private method is not inherited and hence is not available to be overridden. It is
permitted for a proper subclass of a class containing a private method to declare a
method of the same name with the same number of parameters, with corresponding
parameters having the same type; but this is not considered to be a case of overriding, so
the method in the proper subclass need obey the restrictions imposed by overriding; for
example, the return type of the method in the subclass need not bear any relation to the
return type of the private method.

It is not permitted for two method declarations within the same class to have the same
name, the same number of parameters, and corresponding parameters of the same type;
this situation is a compile-time error.

6.5 Constructor Method Declarations

A constructor is a special kind of method that is used to initialize a newly created object.
Constructors have a special declaration syntax and a special invocation syntax.

ConstructorDeclaration:
ConstructorModifieropt ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
Typename (ParameterListopt)

The TypeName in the ConstructorDeclarator must name the class that contains the
constructor declaration. A constructor has no separate name of its own. (At the level of the
Java Virtual Machine, every constructor has the special name <init> . This name is
supplied by the Java compiler. Because it is not a valid identifier, this name cannot be used
directly by a Java programmer.)

October 30, 1995 The Java™ Language Specification—DRAFT 49

6 Class and Interface Type Declarations

A constructor has no separately declared result type. For the purpose of using return
statements, the return type of a constructor is implicitly void .

If a class contains no constructor declarations, then a default constructor is implicitly and
automatically provided. The default constructor takes no arguments; it simply calls the
superclass constructor super() with no arguments and then performs instance variable
initialization. (As a special case, the default constructor for class Object does not invoke
super() because Object has no supeclass.) It is a compile-time error if the superclass
does not have a constructor that takes no arguments.

Unlike ordinary methods, constructors are not inherited by subclasses (§6.1.5).

6.5.1 Constructor Modifiers

ConstructorModifier: one of
public protected private

The field access modifiers public , protected , and private are discussed in (§6.2.1).
Note that constructors are not referenced directly by name, but through the use of
allocation expressions (§9.8) or the newInstance method of class Class ; the access
restrictions indicated by field access modifiers (or their absence) apply to these indirect
means of reference.

Note that a class can be designed to prevent code outside the class definition from creating
instances of the class by declaring at least one constructor (to prevent the creation of an
implicit constructor) and declaring all constructors to be private .

6.5.2 Parameter List

The parameter list for a constructor is identical in structure and behavior to the parameter
list for an ordinary method (§6.4.3).

6.5.3 Throws

The throws clause for a constructor is identical in structure and behavior to the throws
clause list for an ordinary method (§6.4.4).

6.5.4 The Body of a Constructor

ConstructorBody:
{ ExplicitConstructorCallStatementopt BlockBody }

ExplicitConstructorCallStatement:
this (ArgumentListopt) ;
super (ArgumentListopt) ;

The first statement of a constructor may be an explicit call to another constructor of the
same class, written as this followed by a parenthesized argument list, or an explicit call
to a constructor of the immediate superclass, written as super followed by a
parenthesized argument list (this is one of the two places in the Java language where the
keyword super has a special meaning and cannot be replaced by a cast of this to the type
of the immediate superclass; see also §9.7). Note that an explicit constructor call statement
may appear only as the first statement of a constructor body and nowhere else.

If an explicit constructor call is not present and the constructor begin defined is not for
class Object , then the constructor body is implicitly assumed to begin with the statement

6 Class and Interface Type Declarations

50 The Java™ Language Specification—DRAFT October 30, 1995

“super(); ”, that is, a call to the superclass constructor without arguments. Therefore
every constructor for every class except Object effectively begins with a call to some
other constructor, either for the same class or for its immediate superclass.

An explicit constructor call statement may not contain references to instance variables of
the object being created.

A call super(. . .); to a superclass constructor, whether it actually appears as an explicit
constructor call statement or is implicitly assumed, performs an additional implicit action
after a normal return of control from the superclass constructor: all the instance variables
that have initializers are initialized at that time. More precisely:

for every instance variable declared in the class containing the call,
taken in the order in which the instance variables appear in the class declaration:

if that variable has an initializer and
either the initialization expression is not a constant expression or

its value is not the standard default value for the variable,
then the initialization expression is executed and

its value is assigned to the instance variable.

A call this(. . .); to another constructor in the same class does not perform this
additional implicit action.

Taking all these rules into account, a simple inductive argument shows that when an
object of any given class type is created, constructors for all the superclasses of that class
will be called; the body of the constructor for Object will be executed first, and in general
each constructor will be executed only after the constructors for its superclasses have been
executed. All the instance variables of the object will be initialized; each initializer will be
executed exactly once per object creation; when an initialization expression is executed, all
instance variables declared in superclasses and all instance variables preceding it in the
same class declaration will already have been initialized.

class ColoredPoint {
double x, y;
Color c = blue;
Point new(float xVal, float yVal) {

// implicit super() call here.
// implicit assignment of blue to c here.
x = xVal; y = yVal;

}
Point new() { // default constructor

this(0.0, 1.0); // default value
}

}

It is a compile-time error for instance variable initializations to have a forward
dependency. For example, the following code:

class Z {
int i = j + 2;
int j = 4;

}

results in a compile-time error.

6.5.5 Object Creation

An object can be created by an allocation expression (§9.8), which performs these steps:

October 30, 1995 The Java™ Language Specification—DRAFT 51

6 Class and Interface Type Declarations

• A new object is created of the specified type. As the new object is created, all its
instance variables are initialized to their standard default values (§2.3).

• The appropriate constructor for the newly created object is invoked on whatever
actual arguments appear in the allocation expression. For a use of the
newInstance method, the constructor that takes no arguments is invoked.

• After the constructor has returned, a reference to the newly created and initialized
object is the value of the allocation expression.

An object can also be created by a call to the newInstance method of class Class (§16.1),
which performs these steps:

• A new object is created of the type represented by the class object for which the
newInstance method was invoked. As the new object is created, all its instance
variables are initialized to their standard default values (§2.3).

• The constructor for the newly created object is invoked with no actual arguments.
• After the constructor has returned, a reference to the newly created and initialized

object is returned as the value of the call to the newInstance method. The
compile-time type of this reference will be Object , which is the declared return
type of the newInstance method, but its run-time type will be the type
represented by the class object for which the newInstance method was invoked.

6.6 Automatic Storage Management and Finalization

When an object is no longer referenced, this may be detected by the automatic storage
management of the Java system. Automatic storage management typically makes use of
so-called “garbage collector” algorithms. Once it has been determined that an object is no
longer referenced, the storage it occupies may be reclaimed immediately and recycled for
other use—unless the dynamic object has a finalizer.

A class may request finalization of its instances by implementing a non-static method
named finalize that takes no arguments and returns no value:

void finalize();

Such a method is called a finalizer. This method must not be declared with any method
modifiers (§6.4).

When an object is no longer referenced, but has a finalizer, the Java system will
(eventually) call the finalizer before reclaiming the storage occupied by the object.

After an object has been finalized, no further reclamation action is taken until the
automatic storage management determines again that it is no longer referenced. This is
necessary because the finalizer may have resurrected the object by making it accessible
once again, perhaps by storing a reference to the object into some accessible variable. The
finalizer is never called more than once for each object, so an object can be resurrected at
most once.

When an object is no longer referenced, but has a finalizer, but the finalizer has already
been called for that object, the storage occupied by the object may be reclaimed
immediately and recycled for other use.

If an uncaught exception occurs during the finalization, the exception is ignored. The
finalizer will not be called again for that object.

The Java language makes no guarantees about when or in what order objects will be
finalized.

6 Class and Interface Type Declarations

52 The Java™ Language Specification—DRAFT October 30, 1995

The Java language makes no guarantees about which thread will invoke the finalizer for
any given object. It is guaranteed, however, that the thread that invokes the finalizer will
not be holding any user-visible synchronization locks when the finalizer is called.

The purpose of finalizers is to provide a chance free up resources (such as file descriptors
or operating system graphics contexts) that are owned by objects but cannot be accessed
directly and cannot be freed automatically by the automatic storage management. Simply
reclaiming an object’s memory by garbage collection would not guarantee that these
resources would be reclaimed.

6.7 Class Loading and Initialization

6.7.1 Class Loading

A class is loaded when it is needed, either because it is implicitly needed by another class,
or because its is explicitly requested to be loaded using a classLoader (§16.4) or the
Class.forName method of the class Class (§16.1). This is sometimes called dynamic
loading.

When a class is loaded, storage is allocated for its static variables. A class object (an
instance of the class Class) is also allocated to represent the class. The class is then
initialized.

(At the level of the Java Virtual Machine, a class is initialized by invoking its class
initialization method with no arguments. The class initialization method has the special
name <clinit> . This name is supplied by the Java compiler. Because it is not a valid
identifier, this name cannot be used directly by a Java programmer.)

6.7.2 Static Variable Initialization

The static variables of a class may be initialized by initializers in their declarations or by
one or more static initializers, or both.

StaticInitializer:
static Block

A static initializer is simply some code that is executed when the class containing it is
loaded. Static initializers and variable initializers are executed in the order in which they
appear in the class declaration. For example, when the class

class Z {
static int a = 1;
static double b;
static {

a++;
c = 7;

}
static int c = 2;
static Window d = new Window();
static { b = Math.cos(Math.PI/4.0); }

}

is loaded, the following initialization steps occur in the order shown:

• The variable a is set to 1.
• The first static initializer is executed, incrementing a to 2 and setting c to 7.
• The variable c is then set to 2 (the value 7 is lost).

October 30, 1995 The Java™ Language Specification—DRAFT 53

6 Class and Interface Type Declarations

• A new Window is allocated and assigned to variable d.
• The variable b is set to the value of the expression Math.cos(Math.PI/4.0) .

It is a compile-time error for static variable initializations to have a forward dependency.
For example, the following code:

class Z {
static int i = j + 2;
static int j = 4;

}

results in a compile-time error.

It is a compile-time error for static initializers or initializers for static variables to contain
references to instance variables of the class in whose declaration they appear.

The static initializer code may call static methods of the class being loaded and use other
classes that have already been loaded, but it is a run-time error for there to be a circularity,
i.e. a situation where a class A needs class B to have been loaded to run its static initializer
and vice-versa. If this mutual dependency is detected at compile-time a compile-time
error results, if it is detected at run-time a ClassCircularityException is thrown.

6.8 Interface Declarations

An interface declares a type consisting of a set of methods and constants without
specifying its implementation.

Java programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to Object . This provides the power of
multiple interface inheritance to classes without the messiness of multiple
implementation inheritance.

InterfaceDeclaration:
InterfaceModifiersopt interface Identifier ExtendsInterfacesopt InterfaceBody

6.8.1 Interface Modifiers

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public abstract

An interface that is declared public can be accessed from other packages, either directly
(§4.6) or in an import statement (§5.7). If an interface lacks the public modifier, use of the
interface is limited to the package in which it is declared. At most one public interface
may be declared in each compilation unit (§5.4). A compilation unit may not contain both
a public interface and a public class.

Every interface is implicitly abstract . It is permitted but not required to specify the
abstract modifier.

6.8.2 Subinterfaces and theextends Clause

If an extends clause is provided then the interface being declared extends each of the
other named interfaces and therefore implicitly includes the methods and constants
(unless shadowed) of each of the other named interfaces. Any class that implements the

6 Class and Interface Type Declarations

54 The Java™ Language Specification—DRAFT October 30, 1995

declared interface is also considered to implement all the interfaces that this interface
extends.

ExtendsInterfaces:
extends TypeName
ExtendsInterfaces , TypeName

Each TypeName in the extends clause of an interface declaration must name an interface.

It is a compile-time error for there to be a circularity that causes an interface to directly or
indirectly extend itself.

Note that there is no analogue of the class Object for interfaces; that is, while every class
is an extension of class Object , there is no single interface of which all interfaces are
extensions.

6.8.3 Body of an Interface

The body of an interface is much like the body (§6.1.4) of an abstract class (§6.1.1).

InterfaceBody:
{ FieldDeclarations }

However, the body of an interface may not contain constructor declarations (§6.5) or static
initializers (§6.7.2).

6.8.4 Variable Declarations in Interfaces

Every field variable in the body of an interface is implicitly static and final . It is
permitted but not required to specify the static modifier, the final modifier, or both
static and final for such variables. Every field variable in the body of an interface must
have an initializer and the initialization expression must be a constant expression (§9.22).

Every variable declaration in the body of a public interface is implicitly public . It is
permitted but not required to specify the public modifier for such methods.

A variable declaration in an interface body may not include any of the modifiers
synchronized , transient , or volatile .

6.8.5 Method Declarations in Interfaces

Every method declaration in the body of an interface is implicitly abstract . Its body
must be represented by a semicolon, not a block. It is permitted but not required to specify
the abstract modifier for such methods.

Every method declaration in the body of a public interface is implicitly public . It is
permitted but not required to specify the public modifier for such methods.

A method declaration in an interface body may not include any of the modifiers final ,
native , static , or synchronized .

6.9 A class and interface Example

interface Storing {
void freezeDry(Stream s);
void reconstitute(Stream s);

}

October 30, 1995 The Java™ Language Specification—DRAFT 55

6 Class and Interface Type Declarations

class Image implements Storing {
...
void freezeDry(Stream s) {

// JPEG compress image before storing
...

}
void reconstitute (Stream s) {

// JPEG decompress image before reading
...

}
}
class StorageManager {

Stream stream;
...
// Storing is the interface name
void pickle(Storing obj) {

obj.freezeDry(stream);
}

}

The StorageManager class requires that the argument to pickle implement the Storing
interface but can make no other assumption about how obj is implemented.

7 Arrays

56 The Java™ Language Specification—DRAFT October 30, 1995

7 Arrays

Java arrays are objects, are dynamically allocated, and may be assigned to variables of
type Object . All methods of class Object may be invoked on an array.

Java arrays are single-dimensional. An array is an object that contains a number of
variables. (This number may be zero.) These variables have no names; instead they are
referenced using nonnegative integer values. These variables are called the components of
the array. If an array has n components, we say n is the length of the array; the
components of the array are referenced using integers from 0 to n–1, inclusive.

All the components of an array have the same type, called the component type of the array.
If the component type of an array is T, then the type of the array itself is written T[] .

There are no multi-dimensional arrays as such. However, the component type of an array
may itself be an array type. The subarrays themselves have components, of course, and so
on. If, starting from any array type, one considers its component type, and then (if that is
also an array type) the component type of that type, and so on, eventually one must reach
a component type that is not an array type; this is called the element type of the original
array, and the components at this level of the data structure are called the elements of the
original array. (Note that there is one situation in which an element of an array can be an
array: if the element type is Object , then some or all of the elements may be arrays,
because every array can be cast to class Object .)

Like all objects in Java, arrays must be explicitly allocated. However, there are two
different ways to allocate an array. The new operator may be used in the usual way to
allocate a fresh array. In addition, a special “array initializer” syntax may be used on the
right-hand side of the = in a declaration of an array variable.

7.1 Array Types

An array type is notated (§2.2.4) by writing the name of the element type followed by
some number of empty pairs of square brackets [] . The number of bracket pairs indicates
the depth of array nesting.

Array types may be used in declarations and in casts.

7.2 Declarations of Array-valued Variables

Declaring a variable of array type does not allocate an array object and therefore does not
allocate any space for array components. It creates only the variable itself, which can
contain a reference to an array. However, the initializer part of a declarator may allocate
an array, a reference to which then becomes the initial value of the variable.

Here are some examples of declarations of array variables that do not allocate an array:

int[] ai; // array of integer
short[][] as; // array of array of short;
Object[] ao, // array of object

otherAo; // array of object
short s, // scalar short

as[], // array of short
aas[][]; // array of array of short

Here are some examples of declarations of array variables that allocate array objects:

Exception ae[] = new Exception[3];
Object aao[][] = new Exception[2][3];

October 30, 1995 The Java™ Language Specification—DRAFT 57

7 Arrays

int[] factorial = {1, 1, 2, 6, 24, 120, 720, 5040};
char ac[] = { ’n’, ’o’, ’t’, ’ ’, ’a’, ’ ’,

 ’S’, ’t’, ’r’, ’i’, ’n’, ’g’ };
String[] aas = { "array", "of", "String", };

Note that [] may appear as part of the the type at the beginning of the declaration, or as
part of the declarator for a particular variable, or both, as in this example:

byte[] rowvector, colvector, matrix[];

Programmers may prefer to avoid putting some brackets in the declaration type and some
in the declarator as a matter of style.

7.3 Array Initialization

An array may be allocated by using an array initializer in place of an initialization
expression in a declarator. This is written as a pair of braces (“{}”) enclosing a comma-
separated list of expressions. The length of the constructed array will equal the number of
expressions. Each expression specifies a value for one array component. Each expression
must be assignment-compatible with the array’s component type. If the component type
is itself an array type, then the expression specifying a component may itself be an array
initializer; that is, array initializers may be nested.

ArrayInitializer:
{ ElementInitializersopt , opt }

ElementInitializers:
Element
ElementInitializers , Element

Element:
Expr
ArrayInitializer

A redundant trailing comma may appear after the last expression in an array initializer.

7.4 Array Length

An array’s length is not part of its type. As a consequence, over the course of time a single
variable of array type may contain references to arrays of different lengths.

Every array has a .length field, which is a final variable; it may be examined but may
not be changed by assignment. Once an array object is allocated, its length never changes.
If it it desired to make an array variable refer to an array of different length, it is necessary
to allocate or otherwise identify another array of the desired size and then assign a
reference to that other array to the variable.

All array accesses are checked at run-time; an attempt to use an index that is less than zero
or not less than the length of the array causes an ArrayIndexOutOfBoundsException to
be thrown (§9.5).

7.5 Array Indexing

Arrays may be indexed by int values (§9.5); short , byte , or char values may also be
used as they are subjected to unary arithmetic promotion (§3.5) and become int values.
Arrays may not be indexed by long values.

7 Arrays

58 The Java™ Language Specification—DRAFT October 30, 1995

7.6 Array Allocation and Reclamation

Array use example:

/*
* Method to return an n-by-m array of bytes with a
* given initial value.
*/

byte[][] makeByteArray(int n, int m, byte initialValue)
{

byte[][] newArray = new byte[n][m];
for(int i=0 ; i < newArray.length ; i++)

for(int j=0 ; j < newArray[i].length ; j++)
newArray[i][j] = initialValue;

return newArray;

Array use example:

/*
* Method to return a triangular array of bytes with a
* given initial value. Element [i][j] exists only if j < i.
*/

byte[][] makeTriangularByteArray(int n, byte initialValue)
{

byte[][] newArray = new byte[n][];
for(int i=0 ; i < newArray.length ; i++)

newArray[i] = new byte[i];
for(int j=0 ; j < newArray[i].length ; j++)

newArray[i][j] = initialValue;
return newArray;

}

Array use example:

/*
* Method to return a triangular array of integers filled
* with Pascal’s triangle. Element [i][j] exists only if j <= i
* and equals i!/(j!(i-j)!).
*/

int[][] makePascalTriangle(int n)
{

byte[][] result = new byte[n][];
for(int i=0 ; i < result.length ; i++)

result[i] = new byte[i+1];
result[i][0] = 1;
for(int j=1 ; j < i; j++)

result[i][j] = result[i-1][j-1] + result[i-1][j];
result[i][i] = 1;

return result;
}

7.7 Arrays versus Strings

An array of char is not a String . Note that a String does not have assignable components,
whereas the character components of an array of characters can be assigned to.

Neither Strings nor arrays of char are automatically terminated by ’\u0000’ (the NUL
character). In this respect Java differs from C.

October 30, 1995 The Java™ Language Specification—DRAFT 59

8 Blocks and Statements

8 Blocks and Statements

Except as described, statements are executed in sequence. Statements are executed for
their effect, and do not have values.

Java requires that variables be clearly initialized before use. We (will soon) give, in this
section and in the next section on Expressions, the algorithm which a Java compiler is
required to use to determine if a variable has been clearly initialized. A compiler may not
vary from this algorithm, because that would affect what Java programs are legal.

8.1 Blocks

The body of a method and the body of a static initializer are both blocks, which are a
sequence of local variable declarations and statements.

Block:
{ LocalVariableDeclarationsAndStatements }

LocalVariableDeclarationsAndStatements:
LocalVariableDeclarationOrStatement
LocalVariableDeclarationsAndStatements LocalVariableDeclarationOrStatement

LocalVariableDeclarationOrStatement:
LocalVariableDeclarationStatement
Statement

8.2 Local Variable Declarations

A local variable declaration statement introduces a new identifier into a block; it has the
form:

LocalVariableDeclarationStatement:
TypeSpecifier VariableDeclarators

The identifier is not allowed to already be declared as a local variable or label, or as a
variable which is a formal argument to a method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or
method) or type name, then the other declaration is hidden for the remainder of the block,
after which it resumes its force. The keyword this can be used to access a hidden field x,
in an expression of the form this.x .

The initializations of the declared variables are done each time the local variable
declaration statement is executed. It is a compile-time error if a variable is used when the
compiler cannot determine whether the variable will be dynamically initialized before
use, using the standard algorithm (to be) described here.

8.3 Statements

Statements fall into several groups:

8 Blocks and Statements

60 The Java™ Language Specification—DRAFT October 30, 1995

Statement:
EmptyStatement
LabeledStatement
ExpressionStatement ;
SelectionStatement
IterationStatement
JumpStatement
SynchronizationStatement
ExceptionStatements

8.4 Empty Statement

An empty statement does nothing.

EmptyStatement:
;

8.5 Labeled Statements

Statements may carry label prefixes.

LabeledStatement:
Identifier : Statement
case ConstantExpression : Statement
default : Statement

The first form declares the identifier as the label of the statement, and has as its scope the
current block. Labels used with the continue statement must be on iterations statements.

The identifier is not allowed to already be declared as a local variable or label, or as a
variable which is a formal argument to a method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or
method) or type name, then the other declaration is hidden for the remainder of the block,
after which it resumes its force.

Statement labels can be used only in labeled break and continue statements within this
block.

The case labels and default labels may occur only in switch statements (§8.7).

8.6 Expression Statements

Most statements are expression statements, which have one of the forms:

ExpressionStatement:
Assignment ;
PreIncrement ;
PreDecrement ;
PostIncrement ;
PostDecrement ;
MethodCall ;
AllocationExpression ;

All side effects from the expression are completed before the next statement is executed.

October 30, 1995 The Java™ Language Specification—DRAFT 61

8 Blocks and Statements

Unlike C and C++ Java restricts the forms of expressions which are valid statements to
catch errors. The programmer can assign the value of any other expression to a variable to
make such an expression into a statement.

It is legal for a result of a method which is not declared void to be ignored.

Java forbids the expression statement to begin with a cast.

8.7 Selection Statements

Selection statements choose one of several flows of control:

SelectionStatement:
if (Expression) Statement
if (Expression) Statement else Statement
switch (Expression) Block

8.7.1 Theif Statement

In both forms of the if statement, the expression, which must have a boolean type, is
evaluated, including all side effects. If it evaluates to true then the first substatement is
executed. In the second form the second substatement is executed if the expression
evaluates to false . The else ambiguity is resolved by connecting an else with the last
encountered else -less if in the same block.

8.7.2 Theswitch Statement

The switch statement causes control to be transferred to one of several statements
depending on the value of an expression. The type of the expression must be char , byte ,
short or int .

The substatement controlled by a switch is a block. Any top-level statement within the
block may be labeled with one or more case labels, and at most one top-level statement
may be labeled with a default label.

The controlling expression and the case constants are converted to int .

No two of the (promoted) case constants associated with the same switch may have the
same value; this applies whether the case is on char or an integral type.

When the switch statement is executed, its expression is evaluated, including all side
effects, and compared with each case constant. If one of the case constants is equal to the
value of the expression, control passes to the statement of the matched case label. If no
case matches, and there is a default label, control passes to the labeled statement. If no
case matches, and there is no default , then none of the substatements of the switch is
executed.

The case or default labels in themselves do not alter the flow of control, which
continues unimpeded across such labels. To exit from a switch , a break or other jump
statement is typically used.

8.8 Iteration Statements

Iteration statements specify looping:

8 Blocks and Statements

62 The Java™ Language Specification—DRAFT October 30, 1995

IterationStatement:
while (Expression) Statement
do Statement while (Expression) ;
for (ForInit Expressionopt ; ForIncropt) Statement

ForInit:
ExpressionStatements ;
LocalVariableDeclarationStatement

ForIncr:
ExpressionStatements

ExpressionStatements:
ExpressionStatement
ExpressionStatements , ExpressionStatement

Note that the ForInit part ends with a semicolon.

8.8.1 Thewhile Statement

In the while statement the substatement is executed repeatedly until the value of the
expression, which must be of type boolean , becomes false . The test, including all side
effect from evaluation of the expression, takes place before each execution of the
substatement. The substatement may be executed zero times.

8.8.2 Thedo Statement

In the do statement the substatement is executed repeatedly until the value of the
expression, which must be of type boolean , becomes false . The test, including all side
effect from evaluation of the expression, takes place after each execution of the
substatement. The substatement is executed at least once.

8.8.3 Thefor Statement

The for statement

for (ForInit Expressionopt ; ForIncropt) Statement

is equivalent to

ForInit
while (Expressionopt) {

Statement
ForIncr ;

}

except that a continue in Statement will execute ForIncr before re-evaluating Expression.
Thus the first statement specifies initialization for the loop; the first expression specifies a
test, made before each iteration, such that the loop is exited when the expression becomes
false ; the second expression often specifies incrementing that is done after each iteration.

Either or both of the expressions may be omitted. A missing Expression makes the implied
while equivalent to while(true) .

8.9 Jump Statements

Jump statements transfer control unconditionally:

October 30, 1995 The Java™ Language Specification—DRAFT 63

8 Blocks and Statements

JumpStatement:
break Identifieropt ;
continue Identifieropt ;
return Expressionopt ;
throw Expression ;

In any case where a jump statement causes control to bypass a finally part of a try
statement, the non-local control transfer pauses while the finally part is executed, and
continues if the finally part finishes normally (§8.10.2).

8.9.1 Thebreak Statement

An unlabeled break statement transfers control to the end of the enclosing iteration (for ,
do, while), or switch statement. If an identifier is provided, it must be the label of an
arbitrary enclosing statement. Control passes to the statement following the terminated
statement, after executing any required finally clauses, provided the finally clauses
all complete normally.

8.9.2 Thecontinue Statement

The continue statement may occur only in an iteration statement and causes control to
pass to the loop-continuation point of an iteration statement, breaking out of the
statement governed by the iteration but not out of the iteration itself. If the optional
identifier is provided, then it must be a label of an enclosing iteration statement,
otherwise, the nearest enclosing looping statement is continued.

If control passes any finally clauses they are executed before continuing at the
continuation point, and control ultimately reaches the continuation point only if all such
finally clauses complete normally.

More precisely, in each of the statements:

outer: outer: outer:
while (foo) { do { for (;;) {

// ... // ... // ...
//continue here //continue here //continue here

} } while (foo); }

a continue not contained in an enclosing iteration statement continues at the continue
here point. A continue giving the label outer would continue at the continue here
point (and specifically not fall in at the top of the iteration as a goto statement would in C
or C++.)

8.9.3 Thereturn Statement

A method, constructor, or static initializer returns to its caller by the return statement. If
this causes control to pass any finally clauses they are executed before the return
occurs, and the return continues to operate only as long as all of the finally clauses
complete normally.

A return statement with an expression can be used only in methods that are declared to
return a value, that is methods which are not declared void . If required, the expression is
converted, as in an assignment to a variable which has as its type the return type of the
function.

A return statement without an expression can be used in methods that are declared to not
have a result type, constructors and static initializers.

8 Blocks and Statements

64 The Java™ Language Specification—DRAFT October 30, 1995

8.9.4 Thethrow Statement

A throw statement signals a run-time exception. Its argument must be an object type, and
is conventionally a subclass of Exception .

Normal execution is suspended while a suitable exception handler is sought for the
exception. Each enclosing statement which is not a try is terminated, and any finally
clauses that are passed by are executed. The exception propagation continues until a
catch clause is found whose formal argument has a type which is a superclass of the type
of the argument expression. Processing then continues as described in §8.10.2.

8.10 Guarding Statements

Guarding statements establish conditions or contexts during the execution of a
substatement:

GuardingStatement:
synchronized (Expression) Statement
try Block Finally
try Block Catches
try Block Catches Finally

Catches:
Catch
Catches Catch

Catch:
catch (Argument) Block

Finally:
finally Block

8.10.1 Thesynchronized Statement

A synchronized statement establishes a critical expression. The value of the expression
must be a reference to an object (which may be an array).

The synchronized statement acquires the (single) lock associated with the object, waits
for the lock to be free if necessary, executes the governed statement, and then releases the
lock.

8.10.2 Thetry statement

A try statement executes the block in the try part, which is the scope of the exception
handlers established by any catch clauses.

If an exception occurs during execution of the statement in the try part which is not
handled by a nested handler, then the exception will cause termination of the execution of
the try part.

Any catch clauses associated with the try will then be examined. Each catch clause has a
single formal argument of class or interface type, and will handle any exception which can
legally be assigned to this argument. This allows subclasses of type Exception to define
categories of exceptions in a natural way.

Exception handler types are compared in order: the first catch clause supporting a legal
assignment accepts the exception, receiving the object which is associated with the
exception in the actual variable which is its argument. This variable has as its scope the

October 30, 1995 The Java™ Language Specification—DRAFT 65

8 Blocks and Statements

block of the catch . When the catch block completes execution, execution continues with
the finally part, if any, or with the next statement in order after the try .

A finally clause is used to ensure that the block governed by finally is executed after
the statement governed by try and catch , no matter how control leaves the try or catch
part.

After the finally code is executed, control transfers out of the try statement. Normally,
the control transfer destination is that determined by the event which caused the try
statement to be terminated: fall-through, the execution of a break , continue , or return ,
or the propagation of an exception. But if the finally code executes a jump statement
causing another unconditional control transfer outside of its block or causes another
uncaught exception to be thrown, then the original jump statement is abandoned, and the
new unconditional control transfer or exception is processed.

8.11 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is unreachable. The
precise meaning of this remark will be explained in a future version of this document.

9 Expressions

66 The Java™ Language Specification—DRAFT October 30, 1995

9 Expressions

9.1 Value of an Expression

Expressions are used in Java to indicate variables and to compute values. The execution of
an expression produces one of three results:

• a value
• a variable (in C this would be called an lvalue)
• nothing (the expression is void)

An expression produces nothing if and only if it is a method call that invokes a method
whose return type is void . Such an expression can be used only as an expression
statement, because every other context in which an expression can appear requires the
expression to produce a value or a variable. An expression statement that is a method call
may also call a method whose return type is not void; the value returned by the method is
quietly discarded.

An expression that produces a value may not appear as the left-hand operand of any
assignment operator (§9.20) or as the operand of a ++ or -- operator (§9.9.1, §9.7.1). These
contexts require an expression that produces a variable.

All other contexts where an expression may appear require a value, but the expression
may produce either a variable or a value; if the expression produces a variable, then the
value of that variable is used, and we simply speak of the value of the expression.

The execution of an expression can also produce side effects, because expressions may
contain embedded method calls as well as embedded assignment, ++, and -- operators.

Each expression occurs in the declaration of some type which is being declared, either in
its static initializer, in a constructor declaration, or in the code for a method.

9.2 Type of an Expression

Every expression has a compile-time type. The rules for determining the type of an
expression are explained separately below for each kind of expression. The value of an
expression will always be compatible with the compile-time type of the expression, just as
the value stored in a variable will always be compatible with the compile-time type of the
variable.

If the compile-time type of an expression is a class type C, then the value of the expression
will be either null or a reference to an instance of some subclass R of C (which may be C
itself). If the compile-time type of an expression is an interface type I , then the value of the
expression will be either null or a reference to an instance of some class R that
implements the interface I . If C is Objec t, then the value of the expression may also be an
array of some array type R. In any of these cases, if value of the expression is not null then
we say that R is the run-time type of the value. If the compile-time type of an expression is
a primitive type, then the run-time type of the value is the same as the compile-time type
of the expression.

Note that an expression whose compile-time type is a class type F that was declared
final is guaranteed to produce a value whose run-time type is F, because final types
have no subclasses.

These are the only places in the Java language where the run-time type of a value affects
the course of execution in a manner that cannot be deduced from the compile-time type:

October 30, 1995 The Java™ Language Specification—DRAFT 67

9 Expressions

• In a method or constructor call(§9.7). The particular method is used for a call
o.m(...) is chosen based on the methods which are part of the class or interface
which is the static type of o. The run-time type of o participates because a subclass
may override(§6.4.9) a specific method already defined in a parent class so that
this overriding method is called first; this method may or may not choose to
further call the original overridden m method.

• In a narrowing cast (§9.9.2). The value of an expression may be cast to a type that
is narrower than the compile-time type of the expression; this requires a run-time
check that throws an error if the run-time type of the value is not compatible with
the narrower type.

• With instanceof (§9.14). An expression whose compile-time type is a class,
interface, or array type may be tested using instanceof to find out whether the
run-time type of its value is compatible with some narrower type.

• Assigning to an array component of reference type. Such an assignment may
require a narrowing conversion at run time and so may require a run-time check.

• In a catch clause, where an exception is caught only if the run-time type of the
exception is instanceof the formal argument type (§8.10.2).

Thus a Java run-time type error can occur only in these situations:

• In a narrowing cast, the value’s run-time type is not compatible with the cast type.
• In an assignment to an array component of reference type, the run-time type of

the value to be assigned is not compatible with the array component type.
• An exception is not caught.

9.3 Evaluation Order

Java guarantees that the operands to operators appear to be evaluated from left-to-right.
Specifically:

• The left-hand operand of a binary operator appears to be fully executed before
any part of the right-hand operand is executed. For example, if the left-hand
operand contains an assignment to a variable and the right-hand operand
contains a reference to that same variable, then the value produced by the
reference will reflect the fact that the assignment occurred first.

• In an array reference, the expression to the left of the brackets appears to be fully
executed before any part of the expression within the brackets is executed. For
example, in the (admittedly monstrous) expression a[(a=b)[3]] , the expression
a is fully executed before the expression (a=b)[3] ; this means that the original
value of a is fetched and remembered while the expression (a=b)[3] is executed.
This old array is then subscripted by a value that is element 3 of another array
copied from b into a.

• In a method call for an object, there is an expression whose value is an object; this
expression appears to the left of the dot, method name, and left parenthesis of the
method call. This expression appears to be fully executed before any part of any
argument expression within the parentheses is executed.

• In a method call or allocation expression, there may be one or more argument
expressions within the parentheses, separated by commas. Each argument
expression appears to be fully executed before any part of any argument
expression to its right.

• In an allocation expression, there may be one or more dimension expressions,
each within brackets. Each dimension expression appears to be fully executed
before any part of any dimension expression to its right.

9 Expressions

68 The Java™ Language Specification—DRAFT October 30, 1995

It is not necesssarily recommended that Java code rely crucially on this specification; code
is usually clearer when each expression contains at most one side effect, as its outermost
operation. These rules are imposed principally to promote portability of Java programs,
no matter how they are coded.

Java also guarantees that every operand of an operator appears to be fully executed before
any part of the operation itself is performed. In particular, the operands of an increment,
decrement, or compound assignment operator appear to have been fully executed before
the compound assignment operator fetches the value of the variable to be updated. For
example, in the compound assignment operation a+=(a=3) , the resulting value of a is
guaranteed to be 6, because the assignment of 3 to a occurs before the += operation fetches
a in order to add its right-hand operand to it. (Note that this example therefore behaves
slightly differently from a=a+(a=3) , where the old value of a—the value of the left-hand
operand of the + operation—must be fetched and remembered before the assignment of 3
to a occurs. Note also that both these examples have undefined behavior in C, according
to the ANSI/ISO standard.)

Java implementations therefore must respect the order of execution as indicated explicitly
by parentheses and implicitly by operator precedence. An implementation may not take
advantage of algebraic identities such as the associative law to rewrite expressions into a
more convenient computational order unless it can be proven that the replacement
expression is equivalent in value and in its observable side effects, even in the presence of
multiple threads of execution, for all possible computational values that might be
involved. In the case of floating-point calculations, this rule applies also for infinity and
not-a-number (NaN) values. For example, !(x<y) may not be rewritten as x>=y, because
these expressions have different values if either x or y is NaN. Note also that floating-
point calculations that appear to be mathematically associative are unlikely to be
computationally associative. Such computations must not be naively reordered. For
example, it is not correct for a Java compiler to rewrite 4.0*x*0.5 as 2.0*x ; while
roundoff happens not to be an issue here, there are certain large values of x for which the
first expression will produce infinity (because of overflow) but the second expression will
produce a finite result.

In contrast, integer addition and multiplication are provably associative in Java; for
example a+b+c will always produce the same answer whether evaluated as (a+b)+c or
a+(b+c) ; if the expression b+c occurs nearby in the code, a smart compiler may be able to
use this common subexpression.

9.4 Primary Expressions

Primary expressions include names, literals, expressions in parentheses, allocation
expressions, array references, field references, and method calls.

PrimaryExpression:
Name
NotJustName

NotJustName:
AllocationExpression
ComplexPrimary

October 30, 1995 The Java™ Language Specification—DRAFT 69

9 Expressions

ComplexPrimary:
Literal
(Expression)
ArrayAccess
FieldAccess
MethodCall

Name:
QualifiedName
this
super
null

QualifiedName:
Identifier
QualifiedName . Identifier

A name may be a simple identifier or a qualified identifier. When used as an expression,
such a name must be the name of a variable.

If a simple name refers to a local variable or method parameter, then if the variable is
final , the result of the expression is the value of the specified variable; but if the variable
is not final , the result of the expression is the variable itself. This distinction matters
because it implies that only non-final variables may appear as the left-hand operand of an
assignment operator (§9.20). In either case, the compile-time type of the expression is the
declared type of the variable.

If a simple name does not refer to a local variable or method parameter, it may indicate a
field access (§9.6.2). A qualified name cannot refer to a local variable or method parameter,
but may indicate a field access (§9.6.3).

A literal (§1.7) denotes either a primitive value or a reference to an object that is an
instance of class String .

A parenthesized expression is a primary expression that has the same value and compile-
time type as the contained expression.

9.4.1 this andsuper

The keywords this and super may be used only within the body of a non-static method.
They have the same value, which is a reference to the object for which the method was
invoked; but they have different compile-time types.

The compile-time type of this is the class (call it C) within which the method body
appears. The compile-time type of super is the immediate superclass of C, as indicated in
the extends clause of the definition of C. The keyword super may not appear within the
class Object , which has no superclass. The run-time type of the value, of course, may be C
or any subclass of C, unless the class C is final (and therefore has no proper subclasses),
in which case the run-time type is necessarily C.

There are two situations, involving method invocation (§9.7) and constructor
invocation(§6.5.4), in which the keyword super plays a special role. In all other situations,
the keyword super is entirely equivalent to a cast (§9.10.7) of the keyword this to the
type of the immediate superclass.

9 Expressions

70 The Java™ Language Specification—DRAFT October 30, 1995

9.4.2 null

The keyword null denotes a privileged polymorphic value representing the absence of a
reference. Its compile-time type is, in effect, a subtype of every reference type.

9.5 Array Access

ArrayAccess:
Name [Expression]
ComplexPrimary [Expression] r

A primary expression followed by an index expression in square brackets is an array
access. The compile-time type of the primary expression must be an array type (call it T[] ,
an array whose components are of type T); its value will then be either null or a reference
to an array. The index expression undergoes unary arithmetic promotion (§3.5); the
promoted type must be int .

If, at run-time, the value of the primary expression is null , a NullPointerException is
thrown.

If, at run-time, the value of the primary expression is not null , but the value of the index
expression is less than zero, or greater than or equal to the length of the array, an
ArrayIndexOutOfBoundsException is thrown.

The result of an array reference is a variable of type T, namely the variable within the
array selected by the value of the index expression. This resulting variable, which is a
component of the array, is never considered final , even if the array reference was
obtained from a final variable.

Note that, for syntactic reasons, the primary expression in an array access cannot be an
unparenthesized allocation expression.

9.6 Field Access

Fields of an object, array, class, or interface may be accessed in several ways.

In all cases, if the field is final , the result of the field access is the value of the specified
field; if the field is not final , the result of the field access is a variable, namely the
specified field itself. The compile-time type of the result is the declared type of the field.

9.6.1 Field Access through an Object or Array Reference

FieldAccess:
PrimaryExpression . Identifier

A primary expression followed by a dot followed by an identifier indicates field access.

The compile-time type of the primary expression must be a reference type T. The identifier
is resolved as a field variable (§4.5) within type T, and must be the name of a field variable
of the class, interface, or array type, or a compile-time error results. (Note that an array
type has exactly one named field variable: length (§7.4).)

If the field is static , the field access refers to a field variable associated with the class or
interface whose definition contains the declaration of the field. If the field is not static ,
the field access must occur within the definition of a method that is not static , and it
refers to a field variable within the current object (as declared in some class that is
necessarily T or one of its superclasses).

October 30, 1995 The Java™ Language Specification—DRAFT 71

9 Expressions

9.6.2 Field Access through a Simple Name

If a primary expression is an identifier that does not name a local variable, then it is
resolved as a field variable (§4.5) within the class whose definition contains the primary
expression. In effect, a simple name xxx is treated as if it has been written this. xxx.

If the field is static , the field access refers to a field associated with the class or interface
whose definition contains the declaration of the field. If the field is not static , the field
access must occur within the definition of a method that is not static , and it refers to a
field within the current object (as declared in the class whose definition contains the
primary expression or one of its superclasses).

9.6.3 Field Access through a Qualified Name

If a primary expression is a qualified name of the form

TypeName . Identifier

where the TypeName is itself a simple or qualified name that names a class or interface,
then it the Identifier is resolved as a field variable (§4.5) within the specified class or
interface.

If the field is static , the field access refers to a field associated with the class or interface
whose definition contains the declaration of the field. If the field is not static , the field
access must occur within the definition of a method that is not static , and the indicated
type must be the class in whose body the field access appears, or one of its superclasses;
the field access refers to a field within the current object; in this case, the qualified name
TypeName. Identifier is treated as if it had been written ((TypeName)this). Identifier.

9.7 Method Calls

MethodCall:
MethodAccess (ArgumentListopt)

MethodAccess:
Name
PrimaryExpression . Identifier

ArgumentList:
Expression
ArgumentList , Expression

A method call is a method access followed by parentheses that surround a possibly empty,
comma-separated list of expressions, called the arguments. A method access has the same
form as a field access but must refer to a field that is a method rather than a variable.
Resolving a method name at compile time is more complicated than resolving a field
variable because of the possibility of method overloading. Invoking a method at run time
is also more complicated than accessing a field variable because of the possibility of
method overriding.

For a method call to be correct and unambiguous there must be a method definition at
compile time that is both applicable and most specific.

A method definition is applicable to a method call if all these requirements are satisfied::

• The declared name of the method is the same as the field name in the method call.

9 Expressions

72 The Java™ Language Specification—DRAFT October 30, 1995

• The method definition is accessible from the method call by the rules of name
resolution (§4.5).

• The number of parameters in the method definition equals the number of
arguments in the method call, and

• Each actual argument in the method call is assignable (§3.3) to the corresponding
parameter as declared in the method definition.

A method m, declared in class T with n parameters having types T1, ..., Tn is more
specific than another method, also named m but declared in class U with n parameters
having types U1, ..., Un , if and only if T is assignable to U and Tj is assignable to Uj for
all j from 1 to n. This implies, by the way, that if we declare variables

T t; T1 t1; ... Tn tn;

then for any values of these variables, the code

((U)t).m(t1,...,tn)

could invoke the second method without type errors. Of course, within the body of the
first method, this has the type T and its parameters have types T1, ..., Tn . This leads
to the simple and intuitive notion that a method defined in class T is more specific than a
method of the same name defined in class U if it can call the second method simply by
casting this to type U and passing all its parameters as arguments.

At compile time, there is some set of methods applicable to a method call. If this set is
empty (there is no applicable method), a compile-time error results. Otherwise, there must
be a single method definition in the set that is more specific than all others; if not, the
method call is considered ambiguous, and a compile-time error results.

If there is a single most specific method definition, it is called the compile-time definition for
the method call; its name and the compile-time types of the parameters in the definition
constitute the signature for the method call. The declared return type for this method
definition is used as the compile-time type of the method call.

At run time, the method invocation proceeds as follows. If the method access requires
computing a reference value (which may be an implicit occurrence of this), that
subexpression is executed first; if the method is not static, the resulting value is called the
target object and will be available within the called method as the value of this and of
super . Then the argument expressions are evaluated in order, from left to right, and their
values are assigned to the parameters of the method (in a new activation frame). Finally, a
method definition is located and actually invoked.

If the method is static , then it cannot be overridden (because every static method is
implicitly final). The method definition that was determined to be most specific at
compile time is the definition invoked at run time.

If the method is private , then it cannot be overridden. The method definition that was
determined to be most specific at compile time is the definition invoked at run time.

If the MethodAccess appearing before the parenthesized argument list is of exactly the form
super. MethodName, this is considered a request to run the method named MethodName
that is visible in the namespace of the immediate superclass of the class within whose
body the method call appears. Any overriding methods are bypassed; the method
definition that was determined to be most specific at compile time is the definition
invoked at run time. (This is the one of the two situations in the Java language where
super is not equivalent to a cast of this to the type of its immediate superclass; see also
§6.5.4.)

October 30, 1995 The Java™ Language Specification—DRAFT 73

9 Expressions

If the method is neither static nor private and the MethodAccess is not of the form
super. MethodName, then dynamic method lookup occurs. The lookup process starts from
the class that is the run-time type of the target object and from there works its way up the
chain of superclasses (if the target object is an array, the lookup process starts, and ends, at
the class Object). As soon as a class is found with a method definition that matches the
signature for the method call determined at compile time, that method definition is
invoked. The lookup process must succeed, because the definition located at compile time
will be found if no overriding definition is found in some subclass.

The result of a method call is the value returned by the invoked method. If the declared
return type of the method is void , then there is no result; a method call to such a method
may appear only as a top-level expression (as an expression statement or in the header of
a for statement).

9.8 Allocation Expressions

The new operator attempts to create an object or array of a specified type:

AllocationExpression:
new TypeName (ArgumentListopt)
new TypeName DimExprs Dimsopt

TypeName:
TypeKeyword
QualifiedName

TypeKeyword: one of
boolean char byte short int float long double

ArgumentList:
Expression
ArgumentList , Expression

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

Dims:
[]
Dims []

A new operator will raise an OutOfMemoryException if there is insufficient memory
available.

9.8.1 Allocating New Objects

In the first form of allocation expression, the TypeName must name a class type that is not
abstract . This class type is the compile-time type of the allocation expression.

The types of the arguments in the argument list, if any, are used to match against all the
constructor methods, declared in the class type or any of its superclasses, using the
matching rules for method calls (§9.7). As in method calls, a compile-time method
matching error results if there is not a single constructor that is both applicable and most
specific.

9 Expressions

74 The Java™ Language Specification—DRAFT October 30, 1995

The value of the first form of new is a newly created object of the specified class type that
has been initialized by first initializing every instance variable of the object to its standard
default value (§2.3) and then invoking the constructor method for that object on the
arguments.

9.8.2 Allocating New Arrays

The second form of new allocates a new array whose elements are of the type specified by
the TypeName; in this case the TypeName may name any type, even an abstract type or
primitive type. The compile-time type of the allocation expression is an array type that
can be described by deleting the new keyword and every DimExpr expression from the
allocation expression; for example, the compile-time type of the allocation expression

new double[3][3][]

is

double[][][]

The expression in each DimExpr undergoes unary arithmetic promotion (§3.5); the
promoted type must be int . If, at run-time, the value of any DimExpr expression is less
than zero, ArrayNegativeSizeException is thrown.

If a single DimExpr appears, a single-dimensional array is allocated of the specified length.
Each component of the array is initialized to its standard default value (§2.3).

Multidimensional arrays are implemented as arrays of arrays. If A is an N-dimensional
array whose elements are of type T, then A[i] is a reference to an (N–1)-dimensional array
whose elements are of type T.

If an array allocation expression contains N DimExpr expressions, then it effectively
executes a set of nested loops of depth N–1 to allocate the implied arrays of arrays. For
example, the allocation:

float[][] matrix = new float[3][3];

is roughly equivalent to:

float[][] matrix = new float[3][];
for (int i = 0; i < matrix.length; ++i)

matrix[i] = new float[3];

And

String[][][][][] fivedims = new String[6][8][10][12][];

is equivalent to:

String[][][][][] fivedims= new String[6][][][][];
for (int d1 = 0; d1 < fivedims.length; d1++) {

fivedims[d1] = new String[8][][][];
for (d2 = 0; d2 < fivedims[d1].length; d2++) {

fivedims[d1][d2] = new String[10][][];
for (d3 = 0; d3 < fivedims[d1][d2].length; d3++) {

fivedims[d1][d2][d3] = new String[12][];
}

}
}

leaving the fifth dimension, which would be arrays containing the actual references to
String objects, initialized only to null .

October 30, 1995 The Java™ Language Specification—DRAFT 75

9 Expressions

A multidimensional array need not have the same length arrays at each level; thus a
triangular matrix may be allocated by:

float triang[][] = new float[100][];
for (int i = 0; i < triang.length; i++)

triang[i] = new float[i+1];

There is, however, no way to get this effect with a single allocation expression.

9.9 Postfix Expressions

PostfixExpression:
PrimaryExpression
PostIncrement
PostDecrement

PostIncrement:
PrimaryExpression ++

PostDecrement:
PrimaryExpression --

9.9.1 Postfix Increment Operator++

A primary expression followed by a ++ operator is a postfix increment expression. The
primary expression must denote a variable of an arithmetic type. The compile-time type
of the postfix increment expression is the type of the variable. The value 1, converted to
the type of the variable, is added to the value of the variable and stored back into the
variable. The value of the postfix increment expression is the value of the variable before
the new value is stored.

9.9.2 Postfix Decrement Operator--

A primary expression followed by a -- operator is a postfix decrement expression. The
primary expression must denote a variable of an arithmetic type. The compile-time type
of the postfix decrement expression is the type of the variable. The value 1, converted to
the type of the variable, is subtracted from the value of the variable and stored back into
the variable. The value of the postfix decrement expression is the value of the variable
before the new value is stored.

9.10 Unary Operators

Expressions with unary operators group right-to-left:

UnaryExpression:
PreIncrement
PreDecrement
’+’ UnaryExpression
’-’ UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrement:
++ PrimaryExpression

PreDecrement:
-- PrimaryExpression

9 Expressions

76 The Java™ Language Specification—DRAFT October 30, 1995

UnaryExpressionNotPlusMinus:
PostfixExpression
’~’ UnaryExpression
’!’ UnaryExpression
CastExpression

CastExpression:
(TypeKeyword) UnaryExpr
(TypeExpression) UnaryExpressionNotPlusMinus

The grammar is a bit more complicated than one might expect in order to avoid syntactic
problems with expressions such as (p)-q and (p)--q .

In the case of (p)-q , it is not evident whether this is a binary subtraction of qfrom por a
cast of a unary negation of q. It depends on whether or not pnames a type or a variable.
Because the Java built-in unary negation operation can return only values of primitive
type, and because values of primitive type can be cast only to other values of primitve
type, the Java language treats (p)-q as a cast of a unary negation if and only if p is the
name of a primitive type. This permits such familiar constructions as (short)-3 without
requiring additional parentheses.

As for (p)--q , the difficulty for a simple grammar is that it is not clear whether (p) is a
cast operator or an expression without looking two tokens to the right, to the token after
the -- operator. Because most automatic parser generators support only one-token
lookahead, the Java language forbids this construction. One can always write (p)(--q)
instead.

9.10.1 Prefix Increment Operator++

A primary expression preceded by a ++ operator is a prefix increment expression. The
primary expression must denote a variable of an arithmetic type. The compile-time type
of the prefix increment expression is the type of the variable. The value 1, converted to the
type of the variable, is added to the value of the variable and stored back into the variable.
The value of the prefix increment expression is the value of the variable after the new
value is stored.

9.10.2 Prefix Decrement Operator--

A primary expression preceded by a -- operator is a prefix decrement expression. The
primary expression must denote a variable of an arithmetic type. The compile-time type
of the prefix decrement expression is the type of the variable. The value 1, converted to the
type of the variable, is subtracted from the value of the variable and stored back into the
variable. The value of the prefix decrement expression is the value of the variable after the
new value is stored.

9.10.3 Unary Plus Operator+

The value of the operand of the unary + operator must be a primitive value of an
arithmetic type. The operand undergoes unary arithmetic promotion . The compile-time
type of a unary plus expression is the promoted type of the operand. The result is the
promoted value of the operand.

October 30, 1995 The Java™ Language Specification—DRAFT 77

9 Expressions

9.10.4 Unary Minus Operator-

The value of the operand of the unary - operator must be a primitive value of an
arithmetic type. The operand undergoes unary arithmetic promotion . The compile-time
type of a unary plus expression is the promoted type of the operand. The result is the
arithmetic negation of the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. Because Java uses two’s-
complement representation for integers, and the range of two’s-complement values is not
symmetric, the negation of the maximum negative int or long results in that same
maximum negative number. Despite the fact that overflow has occurred, no exception is
thrown. Note that, for all integer values x, -x equals (~x)+1 .

For floating-point values, negation is not the same as subtraction from zero, because if x is
+0.0 , then 0.0-x equals +0.0 , but -x equals -0.0 . Unary minus merely inverts the sign of
a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).
• If the operand is an infinity, the result is the infinity of opposite sign.
• If the operand is a zero, the result is the zero of opposite sign.

9.10.5 Bitwise Complement Operator~

The value of the operand of the unary ~ operator must be a primitive value of an integral
type. The operand undergoes unary arithmetic promotion . The compile-time type of a
unary bitwise-complement expression is the promoted type of the operand. The result is
the bitwise complement of the promoted value of the operand. Note that for all integer
values x, ~x equals (-x)-1 .

9.10.6 Logical Complement Operator!

The value of the operand of the ! operator must be a primitive value of type boolean . The
result is a value of type boolean . The result is true if the operand value is false and
false if the operand value is true .

9.10.7 Casts

A unary expression that does not begin with +, - , ++, or -- and that is preceded by a cast
operator (parentheses enclosing the name of a type) is called a cast, and causes conversion
of the value of the expression to the named type. The compile-time type of the cast
expression is the type named in the cast operator. The value of the cast expression is the
value of the unary expression after conversion to the specified type.

Not all casts are permitted by the Java language; see §3.4. Some casts result in an error at
compile time; for example, it is not permitted to cast a primitive value to a reference type.
Some casts can be proven at compile time always to be correct at run time; for example, it
is always correct to convert a value of a class type to the type of its superclass. Yet other
casts cannot be proven always correct or always incorrect at compile time; such casts
require a test at run time. An IncompatibleTypeException is thrown if a cast is found to
be impermissible at run-time. ??? Or is it ClassCastException ?

9.11 Multiplicative Operators

The so-called “multiplicative operators” * , / , and % have the same precedence and are
syntactically left-associative (they group left-to-right).

9 Expressions

78 The Java™ Language Specification—DRAFT October 30, 1995

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Each operand of the multiplicative operators must be a value of primitive arithmetic type.
Binary arithmetic promotion is performed on the operands (§3.6); the compile-time type
of the multiplicative expression is the promoted type of the operands. If this promoted
type is int or long , then integer arithmetic is performed; if this promoted type is float or
double , then floating-point arithmetic is performed.

9.11.1 Multiplication Operator*

The binary * operator performs multiplication, producing the product of its operands.
Multiplication is a commutative operation. Integer multiplication is associative, but
floating-point multiplication is not always associative.

If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two’s-complement format.
If overflow occurs, then the sign of the result may not be the same as the sign of the
mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IEEE arithmetic:

• If either operand is NaN, the result is NaN.
• If neither operand is NaN, the sign of the result is positive if both operands have

the same sign, negative if the operands have different signs.
• Multiplication of an infinity by a zero results in NaN.
• Multiplication of an infinity by a finite value results in a signed infinity, with the

sign producing rule just given.
• In the remaining cases, where neither an infinity or NaN is involved, the product

is computed and rounded to the nearest representable value using IEEE 754
round-to-nearest mode. If the magnitude is too large to represent, we say the
operation overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, we say the operation underflows; the result is
then a zero of appropriate sign. Note that the Java language requires support of
gradual underflow as defined by IEEE 754.

Despite the fact that overflow, underflow, or loss of precision may occur, execution of a
multiplication operator * never throws a run-time exception.

9.11.2 Division Operator/

The binary / operator performs division, producing the quotient of its operands. The left-
hand operand is the dividend and the right-hand operand is the divisor.

Integer division rounds toward 0; that is, the quotient produced for integer operands n
and d is an integer value q that is negative if and only if exactly one of n and d is negative
and whose magnitude is as large as possible while satisfying . There is one
special case that does not satisfy this rule: if the dividend is the negative integer of largest
possible magnitude for its type, and the divisor is -1 , then integer overflow occurs and the
result is equal to the dividend; despite the overflow, no exception is thrown in this case.

d q⋅ n≤

October 30, 1995 The Java™ Language Specification—DRAFT 79

9 Expressions

On the other hand, if the value of the divisor in an integer division is 0, then an
ArithmeticException is thrown.

The result of a floating-point division is governed by the rules of IEEE arithmetic:

• If either operand is NaN, the result is NaN.
• If neither operand is NaN, the sign of the result is positive if both operands have

the same sign, negative if the operands have different signs.
• Division of an infinity by an infinity results in NaN.
• Division of an infinity by a finite value results in a signed infinity, with the sign

producing rule just given.
• Division of a finite value by an infinity results in a signed zero, with the sign

producing rule just given.
• Division of a zero by a zero results in NaN; division of zero by any other finite

value by a zero results in a signed zero, with the sign producing rule just given.
• Division of a non-zero finite value by a zero results in a signed infinity, with the

sign producing rule just given.
• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,

the quotient is computed and rounded to the nearest representable value using
IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, we
say the operation overflows; the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, we say the operation underflows; the
result is then a zero of appropriate sign. Note that the Java language requires
support of gradual underflow as defined by IEEE 754.

Despite the fact that overflow, underflow, division by zero, or loss of precision may occur,
execution of a floating-point division operator / never throws a run-time exception.

9.11.3 Remainder

The binary % operator is said to yield the remainder of its operands from an (implied)
division; the left-hand operand is the dividend and the right-hand operand is the divisor.

Integer remainder produces a result value such that (a/b)*b+(a%b) is equal to a. Note
that this identity holds even in the special case that the dividend is the negative integer of
largest possible magnitude for its type and the divisor is -1 (the remainder is 0). It follows
from this rule is that the result of the remainder operation can be negative only if the
dividend is negative, and can be positive only if the dividend is positive; moreoer, the
magnitude of the result is always less than the magnitude of the divisor. If the value of the
divisor for an integer remainder operator is 0, then an ArithmeticException is thrown.

The result of a floating-point remainder operation as computed by the % operator is not the
same as the so-called “remainder” operation defined by IEEE 754. (The IEEE 754
“remainder” operation computes the remainder from a rounding division, not a
truncating division, and so its behavior is not analogous to that of the usual integer
remainder operator. The Java language defines % on floating-point operations to behave
in a manner analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod . The IEEE 754 remainder operation may be
computed by the Java library routine Math.IEEEremainder .

The result of a Java floating-point remainder operation is governed by these rules:

• If either operand is NaN, the result is NaN.
• If neither operand is NaN, the sign of the result equals the sign of the dividend.

9 Expressions

80 The Java™ Language Specification—DRAFT October 30, 1995

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
• If the dividend is finite and the divisor is an infinity, the result equals the

dividend.
• If the dividend is a zero and the divisor is finite, the result equals the dividend.
• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,

the floating-point remainder r from a dividend n and a divisor d is defined by the
mathematical relation where q is an integer that is negative only if

 is negative and positive only if is positive, and whose magnitude is as
large as possible without exceeding the magnitude of the true mathematical
quotient of n and d.

Despite the fact that division by zero may occur, execution of a floating-point remainder
operator % never throws a run-time exception. Note that overflow, underflow, or loss of
precision cannot occur.

9.12 Additive Operators

The so-called “additive operators” + and - have the same precedence and are syntactically
left-associative (they group left-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If either operand, or both, of a + operator has type String , the operation is string
concatenation. If exactly one operand is of type String , the other is converted to type
String before the concatenation is performed.

Otherwise, each operand of the additive operators must be a value of primitive arithmetic
type. Binary arithmetic promotion is performed on the operands (§3.6); the compile-time
type of the additive expression is the promoted type of the operands. If this promoted
type is int or long , then integer arithmetic is performed; if this promoted type is float or
double , then floating-point arithmetic is performed.

9.12.1 Addition and Subtraction Operators (+ and-) for Arithmetic Types

The binary + operator performs addition when applied to two operands of arithmetic
type, producing the sum of its operands. Addition is a commutative operation. Integer
addition is associative, but floating-point addition is not always associative.

If an integer addition overflows, then the result is the low-order bits of the mathematical
sum as represented in some sufficiently large two’s-complement format. If overflow
occurs, then the sign of the result will not be the same as the sign of the mathematical sum
of the two operand values.

The result of a floating-point addition is governed by the rules of IEEE arithmetic:

• If either operand is NaN, the result is NaN.
• The sum of two infinities of opposite sign is NaN.
• The sum of two infinities of the same sign is the infinity of that sign.
• The sum of an infinity and a finite value is equal to the infinite operand.
• The sum of two zeros of opposite sign is positive zero.
• The sum of two zeros of the same sign is the zero of that sign.

r n d q⋅()–=
n d⁄ n d⁄

October 30, 1995 The Java™ Language Specification—DRAFT 81

9 Expressions

• The sum of a zero and a nonzero finite value is equal to the nonzero operand.
• The sum of two nonzero finite values of the same magnitude and opposite sign is

positive zero.
• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,

and the operands have the saem sign or have different magnitudes, the sum is
computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, we say the operation underflows; the result is then a zero of
appropriate sign. Note that the Java language requires support of gradual
underflow as defined by IEEE 754.

The binary - operator performs subtraction when applied to two operands of arithmetic
type, producing the difference of its operands; the left-hand operand is the minuend and
the right-hand operand is the subtrahend. For both integer and floating-point subtraction,
it is always the case that a-b produces the same result as a+(-b) . (Note, however, that for
floating-point operands, subtraction from zero is not the same as negation, because if x is
+0.0 , then 0.0-x equals +0.0 , but -x equals -0.0 . For integer values, subtraction from
zero is the same as negation.)

Despite the fact that overflow, underflow, or loss of precision may occur, execution of an
arithmetic additive operator never throws a run-time exception.

9.12.2 String Concatenation Operator+

If the value of either operand of + is a reference to an object of type String , then the +
operator behaves as if it converts the other operand to a reference to a String object (if it
is not already a reference to a String object), and returns a reference to an object of type
String that is the concatenation of the two operand strings. (The qualification “as if” is
present because an implementation may choose to perform the conversion and
concatenation in one step so as to avoid allocating and then discarding an intermediate
String object.)

A operand that is not a reference to a String is converted to a String according to the
compile-time type of the operand:

• If String , but the value is null , then the literal string "null" is the result.
• If a reference type other than String :

• If the value is null , then the literal string "null" is the result.
• Otherwise, the toString method of the object is invoked with no arguments;

this method returns a reference value of type String , which is used as the
result of the conversion unless it is the null value, in which case the literal
string "null" is the result. (The class Object defines such a toString
method, so this method is always available.)

• If a primitive integral type, the value is converted to a string representing the
value in decimal notation, preceded by a - sign if the value is negative. If the
value is nonzero, the first digit is nonzero; if the value is zero, a single digit 0 is
produced.

• If a primitive floating-point type, has floating-point type then this value is
converted ??? TO BE SPECIFIED: FORMAT, TYPE SUFFIX?, ... dtoa? %g?

• If type char , then the operand value is converted to a String of length one
containing the operand value as its single character.

9 Expressions

82 The Java™ Language Specification—DRAFT October 30, 1995

• If type boolean , then the result is either the literal string "true" or the literal
string "false" .

9.13 Shift Operators

The shift operators include the left shift <<, the signed right shift >>, and the unsigned
right shift >>>; they are syntactically left-associative (they group left-to-right). The left-
hand operand of a shift operator is the value to be shifted; the right-hand operand
specifies the shift distance.

ShiftExpression:
AdditivieExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Each operand of a shift operator must be a value of primitive integral type. Binary
arithmetic promotion (§3.6) is not performed on the operands; rather, unary arithmetic
promotion (§3.5) is performed oneach operand separately, and the compile-time type of
the shift expression is the promoted type of the left-hand operand.

If the promoted type of the left-hand operand is int , only the five lowest-order bits of the
right-hand operand are used as the shift distance. It is as if the right-hand operand were
subjected to a bitwise logical and operator & (§9.17) with the mask value 0x1f . The shift
distance actually used is therefore always in the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long , only the six lowest-order bits of the
right-hand operand are used as the shift distance. It is as if the right-hand operand were
subjected to a bitwise logical and operator & (§9.17) with the mask value 0x3f . The shift
distance actually used is therefore always in the range 0 to 63, inclusive.

The value of n<<s is n left-shifted s bit positions; this is equivalent (even if overflow
occurs) to multiplication by two to the power s.

The value of n>>s is n right-shifted s bit positions with sign-extension. The resulting
value is (For non-negative value of n, this is equivalent to truncating integer
division, as computed by the integer division operator / , by two to the power s.)

The value of n>>>s is n right-shifted s bit positions with zero-extension. If n is positive,
the result is the same as that of n>>s ; if n is negative, the result is equal to that of the
expression (n>>s)+(2<<(k-s-1)) , where k is 32 if the type of the left-hand operand is
int and 64 if its type is long .

9.14 Relational Operators

The relational operators are syntactically left-associative (they group left-to-right), but this
fact is not useful; for example, a<b<c parses as (a<b)<c , which is always a compile-time
error, because the type of a<b is always boolean and < is not an operator on boolean
values.

n 2
s⁄

October 30, 1995 The Java™ Language Specification—DRAFT 83

9 Expressions

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof TypeSpecifier Dimsopt

9.14.1 Numerical Comparison Operators<, <=, >, and>=

Each operand of a numerical comparison operator must be a value of primitive arithmetic
type. Binary arithmetic promotion is performed on the operands (§3.6); the compile-time
type of the comparison expression is boolean . If the promoted type of the operands is int
or long , then signed integer comparison is performed; if this promoted type is float or
double , then floating-point comparison is performed.

Floating-point comparison is performed in accordance with IEEE 754:

• If either operand is NaN, the result is false .
• All values other than NaN are ordered, with negative infinity less than all finite

values, and positive infinity greater than all finite values.
• Positive zero and negative zero are considered equal. Therefore -0.0<0.0 is

false , for example, but -0.0<=0.0 is true .

Subject to these considerations for floating-point numbers, the following rules then hold
for integer operands or for floating-point operands other than NaN:

• The value produced by the < operator for is true if the value of the left-hand
operand is less than the value of the right-hand operand, and otherwise is false .

• The value produced by the <= operator is true if the value of the left-hand
operand is less than or equal to the value of the right-hand operand, and
otherwise is false .

• The value produced by the > operator is true if the value of the left-hand operand
is greater than the value of the right-hand operand, and otherwise is false .

• The value produced by the >= operator is true if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand, and
otherwise is false .

9.14.2 Type Comparison Operatorinstanceof

The compile-time type of the left-hand operand of the instanceof operator must be a
class or interface type; otherwise a compile-time error occurs.

The second operand of the instanceof operator is not really an expression, but instead
must specify a reference type.

The instanceof operator returns false if the first operand denotes null . (The rationale
is that while null can be assigned to a variable of any reference type, it is not an object
and therefore not an “instance” of a type.)

The instanceof operator returns true if the run-time type of the first operand allows it
to represent an object of the second operand’s type, and false otherwise. Equivalently, if
the (run-time type of the) first operand can be cast to the second type without raising a
ClassCastException then instanceof is true else false . The prototypical use of
instanceof is:

9 Expressions

84 The Java™ Language Specification—DRAFT October 30, 1995

if (thermostat instanceof MeasuringDevice) {
MeasuringDevice dev = (MeasuringDevice)thermostat;
...

}

Here we may know that thermostat is a device (a superclass of MeasuringDevice), but
may not know if it is, more specifically, a MeasuringDevice . The instanceof operator
protects us from the ClassCastException which would result if the thermostat could
not represent a MeasuringDevice , i.e. could not be assigned to dev.

If there is no possibility that the instanceof can return true then a compile-time error
results. This can occur, for example, in:

class A extends Object;
class B extends Object;
A a;
...
if (a instanceof B) { // impossible and illegal

B b = (B)a; // always an exception
}

Given

T t;
if (t instanceof U) {

U u = (U)t;
...

}

with T and U distinct, then

• if U is a class type, then instanceof is checking that the run-time type of t is a
subclass of U, which can be true only when T is a superclass of U.

• if U is an interface type, then instanceof is checking that U is implemented by the
run-time type of t or by a superclass of the run-time type of T. If this is known to
be true and the check unnecessary, then this is a compile-time error. Since any
class can implement an interface this can never be proven false until run-time.

9.15 Equality Operators

The relational operators are syntactically left-associative (they group left-to-right), but this
fact is only slightly useful; for example, a==b==c parses as (a==b)==c , and because the
type of a==b is always boolean , c must therefore be of type boolean .

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the relational
operators except for their lower precedence. (Thus a<b==c<d is true whenever a<b and
c<d have the same truth-value.)

The equality operators may be used to compare two operands of arithmetic type, or two
operands of boolean type, or two operands of reference type. In all cases, a!=b has the
same result as !(a==b) .

October 30, 1995 The Java™ Language Specification—DRAFT 85

9 Expressions

9.15.1 Numerical Equality Operators== and!=

If one operand of an equality operator is a value of primitive arithmetic type, the other
operand must also be a value of (possibly some other) primitive arithmetic type. Binary
arithmetic promotion is performed on the operands (§3.6); the compile-time type of the
equality expression is boolean . If the promoted type of the operands is int or long , then
an integer equality test is performed; if this promoted type is float or double , then a
floating-point equality test is performed. The numeric equality operators are
commutative.

Floating-point equality testing is performed in accordance with IEEE 754:

• If either operand is NaN, the result of == is false but the result of != is true .
(Indeed, the test x!=x is true if and only if the value of x is NaN.)

• Positive zero and negative zero are considered equal. Therefore -0.0==0.0 is
true , for example.

• Otherwise, two distinct floating-point values are considered unequal. In
particular, There is one value representing positive infinity and one value
representing negative infinity; each compares equal only to itself, and each
compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following rules then hold
for integer operands or for floating-point operands other than NaN:

• The value produced by the == operator is true if the value of the left-hand
operand is equal to the value of the right-hand operand, and otherwise is false .

• The value produced by the != operator is true if the value of the left-hand
operand is not equal to the value of the right-hand operand, and otherwise is
false .

All other cases, including any equality comparisons involving boolean variables or
values, result in compile-time errors.

9.15.2 Boolean Equality Operators== and!=

If one operand of an equality operator is a value of type boolean , the other operand must
also be a value of type boolean . The compile-time type of the equality expression is
boolean . The boolean equality operators are commutative and associative.

The result of == is true if the operands are both true or both false ; otherwise the result
is false .

The result of != is false if the operands are both true or both false ; otherwise the result
is true . (Thus != behaves the same as ^ (§9.16.2) when applied to boolean operands.)

9.15.3 Object Equality Operators== and!=

If one operand of an equality operator is a value of a reference type, the other operand
must also be a value of a reference type. The compile-time type of the equality expression
is boolean . The object equality operators are commutative.

It is a compile-time error if it is impossible to convert the compile-time type of one
operand to the compile-time type of the other by a casting conversion (§3.4). (The run-
time values of the two operands would necessarily be unequal.)

9 Expressions

86 The Java™ Language Specification—DRAFT October 30, 1995

The result of == is true if the operands are both null or both refer to the exact same object
or array; otherwise the result is false .

The result of != is false if the operands are both null or both refer to the exact same
object or array; otherwise the result is true .

Note that while == may be used to compare references of type String , the equality test
determines whether or not the two operands refer to the same exact String object. The
result will be false if the operands are distinct String objects, even if they contain the
same sequence of characters. The contents of two strings s and t can be tested for equality
by the method call s.equals(t) .

9.16 Bitwise and Logical Operators

The bitwise and logical operators include the AND operator &, exclusive OR operator ^ ,
and inclusive OR operator | . These operators have different precedence, with & having
the highest precedence and | the lowest precedence. Each operator is syntactically left-
associative (each groups left-to-right). Each operator is both commutative and associative.

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ̂ AndExpression

InclusiveOrExpression:
ExclusiveOr
InclusiveOrExpression | ExclusiveOrExpression

The equality operators may be used to combine two operands of integral type or two
operands of boolean type.

9.16.1 Integer Bitwise Operators&, ^, and|

If one operand of a &, ^ , or | operator is a value of primitive integral type, the other
operand must also be a value of (possibly some other) primitive integral type. Binary
arithmetic promotion is performed on the operands (§3.6); the compile-time type of the
entire expression the promoted type of the operands.

If the operator is &, the result is the bitwise AND function of the operands.

If the operator is ^ , the result is the bitwise exclusive OR function of the operands.

If the operator is | , the result is the bitwise inclusive OR function of the operands.

9.16.2 Boolean Logical Operators&, ^, and|

If one operand of a &, ^ , or | operator is of type boolean , the other operand must also be
of type boolean . The compile-time type of the entire expression is then boolean .

For &, the result is true if both operand values are true ; otherwise the result is false .

For ^ , the result is true if the operand values are different; otherwise the result is false .

For | , the result is false if both operand values are false ; otherwise the result is true .

October 30, 1995 The Java™ Language Specification—DRAFT 87

9 Expressions

9.17 Conditional-And Operator &&

The && operator is syntactically left-associative (it groups left-to-right). It is associative
with respect to both side effects and result value. It is commutative with respect to result
value but not with respect to whether side effects in its operand expressions will occur.

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

Each operand of && must be of type boolean . The compile-time type of the result is
boolean . The left-hand operand expression is executed first; if its value is false , the
value of the conditional-and expression is false and the right-hand operand expression
is not executed. If the value of the left-hand operand is true , then the right-hand
expression is executed and its value becomes the value of the conditional-and expression.
Thus && computes the same result as & on boolean operands; it differs only in that the
right-hand operand expression is executed conditionally rather than always.

9.18 Conditional-Or Operator ||

The || operator is syntactically left-associative (it groups left-to-right). It is associative
with respect to both side effects and result value. It is commutative with respect to result
value but not with respect to whether side effects in its operand expressions will occur.

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

Each operand of || must be of type boolean . The compile-time type of the result is
boolean . The left-hand operand expression is executed first; if its value is true , the value
of the conditional-or expression is true and the right-hand operand expression is not
executed. If the value of the left-hand operand is false , then the right-hand expression is
executed and its value becomes the value of the conditional-or expression. Thus ||
computes the same result as | on boolean operands; it differs only in that the right-hand
operand expression is executed conditionally rather than always.

9.19 Conditional Operator? :

The conditional operator is syntactically right-associative (they group right-to-left), so
that a?b:c?d:e?f:g means the same as a?b:(c?d:(e?f:g)) .

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions; ? appears between the first and
second expressions, and : appears between the second and third expresssions. The first
expression must be of type boolean . The compile-time types of the second and third
expressions must both be primitive arithmetic types, or must both be boolean, or must
both be reference types. (It is not permitted for either the second or the third operand
expression to have type void .)

• If the second and third operands have arithmetic type, then there are several
cases:
• If the operands have the same type, then that is the compile-time type of the

conditional expression.

9 Expressions

88 The Java™ Language Specification—DRAFT October 30, 1995

• If one of the operands is of type byte and the other is of type short , then the
compile-time type of the conditional expression is short . (Here the Java
language differs from C and C++.)

• If one of the operands is of type T where T is byte , short , or char , and the
other operand is an integer constant expression whose value is representable
in type T, then the compile-time type of the conditional expression is T. (Here
the Java language differs from C and C++.)

• Otherwise, binary arithmetic promotion (§3.6) is applied to their types to
determine a common promoted type, which is the compile-time type of the
conditional expression.

• If the second and third operands are of type boolean , then the compile-time type
of the conditional expression is boolean .

• If the second and third operands are both null , then the result of the conditional
expression is null .

• If one of the second and third operands is null and the type of the other is a
reference type, then the compile-time type of the conditional expression is that
reference type.

• If the compile-time types of the second and third operands are (possibly different)
reference types, then it must be possible to convert one of the types to the other
type (call this type T) by assignment conversion (§3.3); the compile-time type of
the conditional expression is then T. It is a compile-time error if neither type can
be assigned to the other type.

At run time, for each execution of the conditional expression, the first operand expression
is executed first; its value is then used to choose one of the second and third operand
expressions for execution.

• If the value of the first operand is true , the second operand expression is chosen.
• If the value of the first operand is false , the third operand expression is chosen.

The chosen operand expression is then executed and the resulting value is converted to
the compile-time type of the conditional expression as deteremined by the rules stated
above. The operand expression not chosen is not executed for that particular execution of
the conditional expression.

9.20 Assignment Operators

There are many assignment operators; all are syntactically right-associative (they group
right-to-left). Thus a=b=c means a=(b=c) , which assigns the value of c to b and then
assigns the value of b to a.

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
UnaryExpression AssignmentOperator AssignmentExpression

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

The first operand of an assignment operator must be a variable, which may be a named
variable (such as a local variable or a field variable) or a computed variable (such as an
array component). The compile-time type of the assignment expression is the type of the

October 30, 1995 The Java™ Language Specification—DRAFT 89

9 Expressions

variable. The result of the assignment expression is the value of the variable after the
assignment has occurred (but this result is not itself a variable—in this respect the Java
language is like C but unlike C++).

Note that it is not possible to assign to a variable that has been declared final , because
mentioning the name of the variable, on the left-hand side of an assignment operator or
anywhere else, produces its value rather than the variable itself (§9.4, §9.6).

9.20.1 Simple Assignment Operator=

The simple assignment operator converts the value of its right-hand operand to the type
of the left-hand variable and stores this converted value into the variable. It is a compile-
time error if the right-hand operand cannot be converted to the type of the variable by
assignment conversion (§3.3).

9.20.2 Compound Assignment Operators

All compound assignment operators require both operands to be of primitive type.

An expression of the form of the form E1 op= E2 is equivalent to E1 = E1 op (E2) except
that E1 is evaluated only once.

9.21 Expression

An expression is an assignment-expression:

Expression:
AssignmentExpression

(Unlike C and C++, the Java language has no comma operator.)

9.22 Constant Expression

A constant expression is an expression of primitive type that is formed from literals of
primitive type; final variables whose initialization values are constant expressions; casts to
primitive types; the unary operators +, - , ~, and !; the binary operators *, /, %, +, -, <, <=,
>, >=, ==, !=, &, ^, |, &&, and ||; and the ternary conditional operator ? : .

+ - ! ~

Constant expressions are used in interface declarations and case labels in switch
statements.

9.23 Unassigned Variables

It is a compile-time error if a variable might be referenced before it has definitely been
assigned or initialized. The precise meaning of this remark will be explained in a future
version of this document.

10 Collected Java Grammar

90 The Java™ Language Specification—DRAFT October 30, 1995

10 Collected Java Grammar

So far, only the lexical grammar is collected. The rest is awaiting a mechanical cross-check
with a yacc grammar before the tedium of cut/paste...

10.1 Lexical Structure

Unicode escape sequences in the original RawInputCharacters are translated as described
in §1.7.4:

EscapedInputCharacter:
UnicodeEscape
RawInputCharacter

UnicodeEscape:
\ u HexDigit
\ u HexDigit HexDigit
\ u HexDigit HexDigit HexDigit
\ u HexDigit HexDigit HexDigit HexDigit

RawInputCharacter:
Any Unicode Character

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 0 a b c d e f A B C D E F

The EscapedInputCharacters are separated into normal input characters and line
terminators, as described in §1.2:

LineTerminator:
CR
LF
CR LF

InputCharacter:
EscapedInputCharacter, but not CR and not LF

The sequence of LineTerminators and InputCharacters is reduced to a sequence of tokens,
as described in §1.3:

Input:
InputElementsopt

InputElements:
InputElement
InputElements InputElement

InputElement:
Comment
WhiteSpace
Token

WhiteSpace: one of
SP HT FF LineTerminator

Token:
Keyword
Identifer
Literal
Separator
Operator

The Comments are formed as described in §1.4:

October 30, 1995 The Java™ Language Specification—DRAFT 91

10 Collected Java Grammar

Comment:
/ * TraditionalCommentTail
/ * * DocCommentTail
/ / CharactersInLineopt LineTerminator

TraditionalCommentTail:
* /
InputCharacter TraditionalCommentTail
LineTerminator TraditionalCommentTail

DocCommentTail:
/
InputCharacter TraditionalCommentTail
LineTerminator TraditionalCommentTail
TraditionalCommentTail

CharactersInLine:
InputCharacter
CharactersInLine InputCharacter

The keyword tokens are formed as described in §1.5. Here we abuse the grammar
notation and show multiple input characters without the normal spaces between them,
using spaces to separate multiple results on a single line, avoiding many tedious lines like:

Keyword:
a b s t r a c t
b o o l e a n

instead more compactly writing:

Keyword: one of
abstract do implements package throw
boolean double import private throws
break else inner protected transient
byte extends instanceof public try
case final int rest var
cast finally interface return void
catch float long short volatile
char for native static while
class future new super
const generic null switch
continue goto operator synchronized
default if outer this

The lexical structure of identifier tokens are formed as described in §1.6. The UnicodeLetter
s and UnicodeDigits are defined there. An identifier must not have the same spelling (code
point sequence) as a keyword:

Identifier:
UnicodeLetter
Identifier UnicodeLetter
Identifier UnicodeDigit

The literal tokens are described in §1.7:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral

10 Collected Java Grammar

92 The Java™ Language Specification—DRAFT October 30, 1995

The integer literals are formed as described in §1.7.1:

IntegerLiteral:
DecimalLiteral IntegerTypeSuffixopt
HexLiteral IntegerTypeSuffixopt
OctalLiteral IntegerTypeSuffixopt

DecimalLiteral:
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

HexLiteral:
0x HexDigit
0X HexDigit
HexLiteral HexDigit

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalLiteral:
0
OctalLiteral OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

The floating-point literal tokens are formed as described in §1.7.2:

FloatingPointLiteral :
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
. Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt

ExponentPart:
ExponentIndicator SignedIntegeropt

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f F d D

The boolean literal tokens are formed as described in §1.7.3:

BooleanLiteral:
t r u e
f a l s e

The character literal tokens are formed as described in §1.6:

October 30, 1995 The Java™ Language Specification—DRAFT 93

10 Collected Java Grammar

CharacterLiteral:
’ SingleCharacter ’
’ Escape ’

SingleCharacter:
InputCharacter, excluding: ’ \

The escape sequences for character and string literals are formed as described in §1.7.4:

Escape:
\ n // u+000c: linefeed LF
\ t // u+000b: horizontal tab HT
\ b // u+000a: backspace BS
\ r // u+000e: carriage return CR
\ f // u+000d: form feed FF
\ \ // u+005c: backslash
\ ’ // u+0060: single quote
\ " // u+0022: double quote
OctalEscape // u+0000 to u+00ff: from octal value

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

ZeroToThree: one of
0 1 2 3

The string literal tokens are formed as described in §1.7.5:

StringLiteral:
" StringCharacters "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacter, excluding: " \
Escape

The separator tokens are formed as described in §1.8:

Separator: one of
() { } [] ; , .

The operator tokens are formed as described in §1.9; Here we once again abuse the
grammar notation and show multiple input characters without the normal spaces
between them, using spaces to separate multiple results on a single line, avoiding many
tedious lines like:

Operator:
...
= =
< =
> =
...

and instead write:

10 Collected Java Grammar

94 The Java™ Language Specification—DRAFT October 30, 1995

Operator: one of
= > < ! ~ ? :
== <= >= != || && ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

