HOW TO BACKUP, UNLOCK, OR MODIFY COPY-PROTECTED SOFTWARE
Hardcore :

COMPUTIST

Issue No. 9 $2.50

Softkey For The Visible
Computer: 6502 [

Unlock this 6502 Simulator

Hardcore COMPUTIST’s own
versatile deprotection program

Sensible Speller
Softkey

The long awaited backup
procedure for this useful
spelling checker

BULK RATE

U.S. Postage

* Hardcore COMPUTIST PAID
.~ P.O. Box 44549 By '

Tacoma, WA 98444

APPLIED ENGINEERING IS 100% APPLE
That's Why We're So Good At It!

THE NEW TIMEMASTER 11

e

NEW 1984
Automatically date DESICN
stamps files with . An official

PRO-DOS PRO-DOS Clock

Lt

® Just plugit in and your programs can read the year, month, date, day,
and time to 1 millisecond! The only clock with both year and ms.

@ A rechargeable NiCad battery will keep the TIMEMASTER I running
for over ten years,

® Powerful 2K ROM driver — No clock could be easier to use.

@® Full emulation of most other clocks, including Thunderclock and
Appleclock (but you'll like the TIMEMASTER |l mode better).
We emulate other clocks by merely dropping off features. We can
emulate them but they can’t emulate us.

® Basic, Machine Code, CP/M and Pascal software on 2 disks!

@ Eight software controlled interrupts so you can execute two programs
at the same time (many examples are included).

® On-board timer lets you time any interval up to 48 days long down to
the nearest millisecond.
The TIMEMASTER Il includes 2 disks with some really fantastic time
oriented programs (over 40) including appointment book so you'll
never forget to do anything again. Enter your appointments up to a
year in advance then forget them. Appointment book will remind you
in plenty of time. Plus DOS dater so it will automatically add the date
when disk files are created or modified. The disk is over a $200.00
value along—we give the software others sell. All software packages
for business, data base management and communications are made
to read the TIMEMASTER I1. If you want the most powerful and the
easiest to use clock for your Apple, you want a TIMEMASTER 11,

PRICE $129.00

Super Music Synthesizer
Improved Hardware and Software

® Complete 16 voice music synthesizer on one card. Just plug it into
your Apple, connect the audio cable (supplied) to your stereo, boot
the disk supplied and you are ready to input and play songs.

® [t's easy to program music with our compose software. You will start
right away at inputting your favorite songs. The Hi-Res screen shows
what you have entered in standard sheet music format.

® MNow with new improved software for the easiest and the fastest
music input system available anywhere.

® We give you lots of software, In addition to Compose and Play
programs, 2 disks are filled with over 30 songs ready to play.

® Easy to program in Basic to generate complex sound effects. Now

your games can have explosions, phaser zaps, train whistles, death

cries, You name it, this card can do it

Four white noise generators which are great for sound effects.

Plays music in true stereo as well as true discrete quadraphonic.

Full control of attack, volume, decay, sustain and release.

Will play songs written for ALF synthesizer (ALF software will nottake

advantage of all our card’s features, Their software sounds the same

in our synthesizer.)

Our card will play notes from 30HZ to beyond human hearing.

Automatic shutoff on power-up or if reset is pushed.

Many many more features. PRICE $159.00

Z-80 PLUS!

® TOTALLY compatible with ALL CP/M software.

® The only Z-80 card with a special 2K “CP/M detector” chip.

® Fully compatible with microsoft disks (no pre-boot required).

@® Specifically designed for high speed operation in the Apple lle (runs
just as fast in the 114 and Franklin).

® Runs WORD STAR, dBASE 1I, COBOL-80, FORTRAN-80,
PEACHTREE and ALL other CP/M software with no pre-boot

® A semi-custom L.C. and a low parts count allows the Z-80 Plus to fly
thru CP/M programs at a very low power level, (We use the Z-80A at
fast AMHZ.)

® Does EVERYTHING the other Z-80 boards do, plus Z-80 interrupts.

Don't confuse the Z-80 Plus with crude copies of the microsoft card. The
Z-80 Plus employs a much more sophisticated and reliable design. With
the Z-80 Plus you can access the largest body of software in existence.
Two computers in one and the advantages of both, all atan unbelievably

Viewmaster 80

There used to be about a dozen 80 column cards for the Apple, now
there's only ONE.

® TOTALLY Videx Compatible,
@ B0 characters by 24 lines, with a sharp 7x9 dot matrix.
@® On-board 40/80 soft video switch with manual 40 column override
@ Fully compatible with ALLApple languages and software—there are
NO exceptions.
® Low power consumption through the use of CMOS devices.
® All connections are made with standard video connectors,
® Both upper and lower case characters are standard.
® All new design (using a new Microprocessor based C.R.T. controller)
for a beautiful razor sharp display.
® The VIEWMASTER incorporates all the features of all other 80 column
cards, plus many new improvements,
o SORSHUREITT MUANNOLGRN USNAY AR oS
VIEWMASTER 169 YES YES YES YES YES YES YES YES
SUPRTERM MORE NO YES NO NO NO NO YES VS
WIZARDSO MORE NO NO NO N YES N YES YES
VISIONED MORE YES YES NO NO YES NO NO NO
OMNIVISION MORE NO YES NGO NO NO NO Y YES
VIEWMAXEO MORE YES YES NG NO YES N NG YES
SMARTERM MORE YES YES NO NO NO YES YES NO
VIDEOTERM MORE NO NO YES NO YES YES NO YES

The VIEWMASTER 80 works with all 80 column applications including CP/M,
Pascal, WordStar, Format 11, Easywriter, Apple Writer 11, VisiCalc, and all
others. The VIEWMASTER 80 is THE MOST compatible 80 column card you

: ANY price!
i PRICE $139.00 | " buy aLANY price PRICE $179.00
® Expands your Apple lle to 192K memory. MemoryMaster Ile 128K RAM Card
® Provides an 80 column text display. e . . . :
® Compatible with all Apple lle 80 column and extended 80 column ® :;Zﬁ:t’)?g a?f::;i;ﬂgﬁii?ﬂg?EOat ’f::)str;;:tz?jscal FERICRNGD
® Eardbsoftwege (saml?dphys:cqi sztas Apple’s 64K card). ® Documentation included, we show you how to use all 192K,
an be used as asolid state disk drive to make your programs run up 1iyoualready have Apple’s 64K card, just orderthe MEMORYMASTER [le with 64K and use
to 20 times FASTER (the 64K configuration will act as half a drive). the 64K from your old board to give you a full 128K. (The board is fully socketed so you
@ Permits your lle to use the new double high resolution graphics. simply plug in more chips.)
® Automatically expands Visicalc to 95 K storage in 80 columns! The MemoryMaster lle with 128K $249
64K config. is all that's needed, 128K can take you even higher. Upgradeable MemoryMaster Ile with 64K $169
® PRO-DOS willuse the MemoryMaster lle as a high speed disk drive. Non-Upgradeable MemoryMaster lle with 64K $149

Qur boards are far superior to most of the consumer electronics made today. Al 1.C.'s are in high quality sockets with mil-spec. components used throughout. P.C. boards are glass-
epoxy with gold contacts. Made in America to be the bestin the world, All products work in the APPLE I1E, 11, 114 and Franklin. The MemoryMaster lieis lle only. Applied Engineering
also manufactures a full line of data acquisition and control products for the Apple; A/ converters and digital /O cards, etc. Please call for more information. All our products are fully
tested with complete documentation and available for immediate delivery. All products are guaranteed with a no hassle THREE YEAR WARRANTY.

Send Check or Money Order to:
APPLIED ENGINEERING
P.O. Box 798
Carrollton, TX 75006

Texas Residents Add 5% Sales Tax
Add $10.00 If Outside U.S.A.
Dealer Inquiries Welcome

Call (214) 492-2027
8 am. to 11 p.m. 7 days a week
MasterCard, Visa & C.0.D. Welcome
No extra charge for credit cards

Where the Adventures never end.

=1

-J""-_—-

r
L Y

Wander through a land
full of dangers and rewards.
Battle strange and wondrous creatures.
Uncover hidden treasures...

in EAMON, you roam through a fantasy world where YOU control the action...and your destiny.

5 1 1 1 0 o o R L

Enclose $4.00 for each EAMON scenario volume that you
order or use our special EAMON collectors offer. Adventure scenarios are

packed on double-sided disks. Minimum Order: 2 Volumes. ($8.00)

Name

HC9

Address
City

State

Zip

Country
VISA/MC

Signature

Phone

Exp

Make checks payable
to:

Computer Learning Center
P.0O. Box 45202
Tacoma, WA 98445

US funds only.

No purchase orders or C.0.D.

Washington state residents add
7.8% sales tax.

Foreign orders add 20% for
shipping and handling.

—

The MASTER disk is required to
play any EAMON scenario.

] 01 MASTER/Beginners Cave

02 Lair of the Minotaur

03 Cave of the Mind

04 Zyphur River Venture

05 Castle of Doom

06 Death Star

07 Devil's Tomb

08 Abductor's Quarters

09 Assault of the Clone Master
10 Magic Kingdom

11 Tomb of Molinar

12 Quest for Trezore

13 Caves of Treasure Island
14 Furioso

15 The Heroes' Castle

16 Caves of Mondamen

17 Merlin's Castle

18 Hogarth Castle

19 Death Trap

20 The Black Death

1 Quest for Marron
Senators’ Chambers
Temple of Ngurct

Black Mountain

Nuclear Nightmare
Assault on the Moleman
Revenge of the Moleman
Tower of London

Lost Island of Apple
Underground City

]

Gauntiet
House of lll Repute
Orb of Polaris

Death's Gateway

Lair of the Mutants
Citadel of Blood

Quest for the Holy Grail
City in the Clouds
Museum of Unnatural History
Deamons Playground
Caverns of Lanst
Alternate Beginners Cave
Tomb of Y'Golonac
Operation Crab Key
Feast of Carroll

The Master's Dungeon
Crystal Mountain

Lost Adventure

The Manxome Foe
Behind the Sealed Door
Land of Death

Jungles of Vietnam
Black Castle of Nagog
Sewers of Chicago
Caverns of Doom
Valkenburg Castle

7 Modern Problems

Tournament Adventures

[60 Castle of Count Fuey
[0 61 Search for the Key
[0 62 The Rescue Mission

EAMON Utilities
] 01 EAMON Utilities
02 EAMON Utilities
03 EAMON Utilities
Dungeon Designer Ver 5

3284?183%38%3-‘:8;&ﬁﬁﬁsﬁg%&%&%&giﬁﬁﬂ‘%%%ﬁg?’nﬁﬁﬁ

o

il
Ol

SPECIAL COLLECTORS’S OFFER

Every EAMON scenario & Utilities.
All for only $200.%

1 YES! Send me the entire
EAMON collection of 64 volumes.

Hardcore COMPUTIST no.9

M any of the articles published in Hardcore COMPUTIST detail the removal of copy
protection schemes from commercial disks or contain information on copy protection and
backup methods in general. We also print bit copy parameters, tips for adventure games,
advanced playing techniques (APT’s) for arcade game fanatics and any other information
which may be of use to the serious Apple user.

Hardcore COMPUTIST also contains a center CORE section which generally focuses on
information not directly related to copy- protection. Topics may include, but are not limited
to, tutorials, hardware/software product reviews and application and utility programs.

New readers are advised to read over the rest of this page carefully in order to avoid frus-
tration when following any of the softkeys or typing in any of the programs printed in this
issue. Longtime readers should know what to do next: Make a pot of coffee, get out some

Typing in BASIC Programs

Before you begin typing in any of the Applesoft
programs printed in Hardcore COMPUTIST, be sure
you have some initialized disks at hand on which to
save the program(s). Also, don’t forget to boot up
with a DOS 3.3 disk prior to typing in the program.
It is good idea to SAVE the BASIC program to disk
frequently while typing the program to minimize
duplication of effort in the event of power failure or
nuclear war. SAVE your programs under the name
that is indicated in the article.

blank disks and settle in for a long evening at the keyboard.

What Is a Softkey Anyway?

A softkey is a term which we coined to
describe a procedure that removes, or at least
circumvents, any copy protection that may be
present on a disk. Once a softkey procedure
has been performed, the disk can usually be
duplicated by the use of Apple’s COPYA pro-
gram which is on the DOS 3.3 System Master
Disk.

Following A Softkey Procedure

The majority of the articles in Hardcore COM-
PUTIST which contain a softkey will also include a
discussion of the type of copy protection present on
the disk in question and the technigue(s) necessary
to remove that protection. Near the end of the arti-
cle, a step-by-step “‘cookbook’ method of duplicat-
ing the disk will appear. Generally, the appropriate
actions for the reader to perform will appear in bold-
face type. Examples are:

1) Boot the disk in slot 6
PR#6

or 2) Enter the monitor
CALL -151

It is assumed that the reader has some familiarity
with his or her Apple, i.e. knowing that the RETURN
key must be hit following the commands illustrated
above.

Hardcore COMPUTIST tries to verify the softkeys
which are published, although occasionally this is not
possible. Readers should be aware that different,
original copies of the same program will not always
contain an identical protection method. For this rea-
son, a softkey may not work on the copy of a disk
that you own, but it may work on a different copy
of the same program. An example of this is Zaxxon,
by Datasoft, where there are at least 3 different pro-
tection methods used on various releases of the game.

Hardware Recommendations

Certain softkey procedures require that the com-
puter have some means of entering the Apple’s sys-
tem monitor during the execution of a copy-protected
program. For Apple Il + owners there are three bas-
ic ways this can be achieved:

1) Place an INTEGER BASIC ROM card in one of
the Apple's slots.

2) Install an old monitor or modified F8 ROM on
the Apple’s motherboard. The installation of a modi-
fied F§ ROM is discussed in Ernie Young's article,
“*Modified ROMS’’, which appeared in Hardcore
COMPUTIST no. 6

3) Have available a non-maskable interrupt (NMI)
card such as Replay or Wildcard.

Longtime readers of Hardcore COMPUTIST will
vouch for the fact that the ability to RESET into the
monitor at will, greatly enhances the capacity of the
Apple owner to remove copy protection from pro-
tected disks.

A 16K or larger RAM card is also recommended
for Apple Il or 11+ owners. A second disk drive is
handy, but is not usually required for most programs
and softkeys.

Checksoft

Checksoft is a Binary program which can be used
to check Applesoft programs for your typing errors.
For each Applesoft program, we will also print the
checksums generated by Checksoft. These checksums
consist of the Applesoft program’s line numbers and
a hexadecimal (base 16) number for each line. If you
use Checksoft and make a typing error, your check-
sums will differ from ours beginning at the line where
you made the error.

The Checksoft program was printed in Hardcore
COMPUTIST no.1 and The Best of Hardcore Com-
puting, both which are available as back issues. This
program is also on Library Disk #1 and the Best of
Hardcore Library disk. These disks contain all of the
programs which appeared in their corresponding
magazines.

Requirements

Most of the programs and softkeys which appear
in Hardcore COMPUTIST require an Apple Il +
computer (or compatible) with a minimum 48K of
RAM and at least one disk drive with DOS 3.3. Oc-
casionally, some programs and procedures have spe-
cial requirements such as a sector editing program or
a “‘nonautostart’ FB monitor ROM. The prerequi-
sites for deprotection techniques or programs will al-
ways be listed at the beginning article under the
“‘Requirements:”’ heading.

Software Recommendations
Although not absolutely necessary, the following
categories of utilities are recommended for our read-
ers who wish to obtain the most benefit from our ar-
ticles:

1) Applesoft Program Editor such as Global Program
Line Editor (GPLE).

2) Disk Editor such as DiskEdit, ZAP from Bag of
Tricks or Tricky Dick from The CIA.

3) Disk Search Utility such as The Inspector, or The
Tracer from The CIA.

4) Assembler such as the S-C Macro Assembler or
Big Mac.

5) Bit Copy Program such as COPY 11+, Locksmith
or The Essential Data Duplicator.

6) Text Editor capable of producing normal sequen-
tial text files such as Applewriter 11, Magic Window
Il or Screenwriter II.

Three programs on the DOS 3.3 System Master
Disk, COPYA, FID and MUFFIN, also come in very
handy from time to time.

Recommended Literature
The Apple I and 11 + 's come bundled with an Ap-
ple Reference Manual, however this book is not in-
cluded with the purchase of an Apple //e. This book
is necessary reference material for the serious com-

Typing in Binary Programs

Binary programs are printed in two different for-
mats, as source code and as object code in a hex-
adecimal dump. If you want to type in the source
code, you will need an assembler. The 5-C Macro As-
sembler is used to generate all the source code which
we print, although any assembler whose use you un-
derstand will do just fine for entering source code.
Binary programs can also be entered directly with the
use of the Apple monitor by typing in the bytes list-
ed in the hexdump at the appropriate addresses.
Don’t forget to BSAVE binary programs with the
proper address and length parameters listed in the
article.

Checkbin

Like Checksoft, Checkbin is a program which will
aid in spotting the typing errors in programs. It is
used for checking binary programs. The hexadecimal
dumps we print for Binary programs will contain a
checksum value after each eight bytes (sometimes less
depending on where the program begins and ends)
of code. If you use Checkbin, any typing errors you
make are in the first line where your checksums do
not match those which accompany the program.

Checkbin can be found in the same magazines and
on the same library disks as Checksoft.

putist. A DOS 3.3 manual is also reco ded
Other helpful books include:

Beneath Apple DOS,Don Worth and Peter Leich-
ner, Quality Software.519.95.

Assembly Lines:The Book, Roger Wagner, Softalk
Books. §19.95.

What's Where In The Apple, Professor Lubert,

Micro Ink. $24.95.

Let Us Hear Your Likes and Gripes

New and longtime readers of Hardcore COM-
PUTIST are encouraged to let us know what they like
and don’t like about our magazine by writing letters
to our INPUT column. Qur staff will also try to an-
swer questions submitted to the INPUT column,
although we cannot guarantee a response due to the
small size of our staff, Also, send your votes for the
softkeys you would like to see printed to our “*Most
Wanted List.”

How-To’s Of Hardcore

Hardcore COMPUTIST no.9

If you are reading our magazine for the first time, welcome to Hardcore COMPUTIST,
a publication devoted to the serious user of Apple II and Apple II compatible computers.
We believe our magazine contains information you are not likely to find in any of the other
major journals dedicated to the Apple market.

Our editorial policy is that we do NOT condone software piracy, but we do believe that
honest users are entitled to back up commercial disks they have purchased. In addition to
the security of a backup disk, the removal of copy protection gives the user the option of
modifying application programs to meet his or her needs.

Publisher/Editor
Charles R. Haight
Technical Editors
Gary Peterson Ray Darrah
Production & Graphics
Lynn Campos-Johnson
Circulation
Valerie Robinson Michelle Frank
Business Manager
Ken Fields
Advertising
Attn: Valerie Robinson
Advertising Department
3710 100th Street SW
Tacoma, WA 98499
Printing
Grange Printing, Inc.
Seattle, WA
Publishing
Softkey Publishing
P.O. Box 44549
Tacoma, WA 98444
USA

Address all advertising inquiries to Hardcore
COMPUTIST, Advertising Department, 3710
100th St. SW, Tacoma, WA 98499. Address
all manuscripts and editorials to: Hardcore
COMPUTIST, Editorial Department, P.O.
Box 44549, Tacoma, WA 98444,

MAILING NOTICE: Change of address
must be postmarked at least 30 days prior to
move. Paste your present mailing label on
postal form 3576 and supply your new address
for our records. Issues missed due to non-
receipt of change of address may be acquired
at the regular back issue rate.

Return postage must accompany all
manuscripts, drawings, photos, disks, or tapes
if they are to be returned. No responsibility can
be assumed for unsolicited manuscripts. We
suggest you send only copies.

Entire contents copyright 1984 by SoftKey
Publishing. All rights reserved. Copying done
for other than personal or internal reference
(without express written permission from the
publisher) is prohibited.

The editorial staff assumes no liability or
responsibility for the products advertised in the
magazine. Any opinions expressed by the
authors are not necessarily those of Hardcore
COMPUTIST magazine or SoftKey Pub-
lishing.

SUBSCRIPTION INFORMATION: Rates
for one year are as follows: U.S. $25, 1st Class,
APO/FPO, and Canada $34, Mexico $39, For-
eign Airmail $60, Foreign Surface Mail $40.
Subseription inquiries should be directed to
Subscription Department, Hardcore COM-
PUTIST, P.O. Box 44549, Tacoma, WA
98444.

DOMESTIC DEALER RATES sent upon re-
quest, or call (206) 581-6038.

Apple usually refers to the Apple II or II
Plus computer and is a trademark of Apple
Computers, Inc.

Hardcore

COMPUTIST

THIS ISSUE:

9 Sensible Speller Softkey
By Cris Rys
Now you can not only copy it, but make it COPY Aable as well.

11 Super 10B
By Ray Darrah
Break your disks quickly and easily.

CORE Section:

15 ProDOS To DOS: Single Drive Conversion Technique
By Jimmy Eubanks Jr.

Learn how to transfer your DOS 3.3 files to ProDOS

if you have only one disk drive.

18 Using ProDOS On A Franklin Ace

19 CORE Word Search Generator
By Barry Palinsky

24 Softkey For Sierra On-Line Software
By Doni G. Grande & Clay Harrell
Learn the secret to many of Sierra On-Line’s programs.

26 Softkey For The Visible Computer: 6502
By Jared Block & Bob Bragner

28 The Visible Computer Vs. Apple II- 6502 ALT: REVIEW
Reviewed by Martin Collamore

SPECIAL FEATURES

7 Readers’ Softkey And Copy Exchange

Backing-Up VISIDEX

By Anthony L. Barnett

Softkey For MUSIC CONSTRUCTION SET
By Jim Waterman

Deprotecting GOLD RUSH

By Clay Harrell

Short Softkey For VISITERM

By B. Baker

Deprotecting COSMIC COMBAT

By Clay Harrell

29 Adventure Tips
DEPARTMENTS

4 Input
18 Corrections

Hardcore COMPUTIST no.9 3

INPUT_INPUT INPUT

A Reader’s Recommendations

I would like to recommend two books
about machine language.

‘“‘Assembly Lines: The Book’ by Roger
Wagner is an excellent book for the begin-
ner, who should be equipped with either the
DOS Toolkit Assembler from Apple, or
Merlin by Roger Wagner Publishing, form-
erly Southwestern Data Systems. Merlin is
also offered through CALL A.P.P.L.E.to
their club members as Big Mac at a substan-
tially reduced price.

“*Apple Machine Language’’ by Don and
Kurt Inman is a great book for anyone who
already understands BASIC. It is extremely
simple to follow and does not require any
specific assembler. I would not recommend
using the book ““Using 6502 Assembly Lan-
guage’’ for a beginner. Randy Hyde assumes
too much and is vague in some important
areas.

My personal preference in assemblers is
Lisa 2.5 which is extremely quick but has a
truly lousy editor. Unfortunately, I do not
have Lisa 2.6, the new version by Lazerware.
Merlin/Big Mac and the S-C Assembler are
also very good.

Although I do not have Ultima III or
Flight Simulator II yet, I have heard that they
can be copied with the Essential Data Dupli-
cator, For Ultima III, copy tracks #-11 nor-
mally. If you get an error on track A, copy
it over with auto lengths.. For Flight Simu-
lator II, use EDD Version 3 and copy tracks
@ through 22 auto lengths and sync.

Re. Hardcore COMPUTIST no.7:
Although interviewing Mr. Xerox or Krac-
Man would be a good idea, it would prove
difficult. Mr. Xerox has turned traitor and
become a copy protector while Mr. Krac-
Man is usually extremely busy.

Pirate’s Friend, the copier everyone seems
to be talking about, is in fact a modified (or
rather renamed) copy of the early Copy II
Plus. The newer version is much better.

Lastly, I have compiled a double-sided
disk of public domain cracking utilities and
copiers. These programs are all public do-
main and therefore, if you have them, you
can distribute them among your friends.

On my disk are programs like DeMuffin
Plus, Advanced DeMuffin, Fastload Create,
Disk Muncher 1.1, CopyB, CopyC, Crack
'Em, Unlock It Up, Craft Copy, Mini-
RWTS, A ““Crack ROM”’, and others. Each
includes a text-file describing basic use, I
have cracked many protected programs with
these.

If you would like a copy of this disk, send
a blank disk (or two, if you prefer that I
don’t put anything on the back) with $4. for

4 Hardcore COMPUTIST no.9

postage and copying. Don’t forget to pack-
age carefully. The post office has a tenden-
cy to damage unprotected disks.

Marco Hunter
2606 Roscomare Rd
Los Angeles, CA 90077

Tricking The Accountant

I noted in your Volume 3, Number 3 edi-
tion of Hardcore COMPUTIST that you are
requesting assistance with softkeys to a num-
ber of programs, in particular, the Accoun-
tant from Decision Support Software. As far
as [know, this program is not protected ex-
cept for a sixteen pin connector that you plug
into the game port.

Several years ago I accidentally severed
several of the pins for my connector. Instead
of taking the time to contact the supplier, I
explored the connector with an ohmmeter
and discovered that there was a 10,000 ohm
resistance between pins 11 and 13.

I soldered a 10,088 ohm resistor to a new
connector and was back in business with very
little down time. The resistors and connec-
tors are available from most electronic stores
such as Radio Shack.

Ted M. Doniguian
Laguna Beach CA

A Chess Check

Re. Modified ROMS article by Ernie
Young

Many thanks for your article. I made an
F8 EPROM per your instructions and every-
thing worked as you indicated.

However, my Sargon III chess game will
no longer boot. I get a flashing screen with
garbage and the drive won’t stop. My intent
was to make a backup copy (preferably an
unprotected copy I could modify). None of
my copy programs will copy it. Any ideas?
My system is a 48K Apple I1 +, 2DD, 16K
RAM, INT Card in slot 4, MX-88 and
modem.

I would appreciate any comments you
might have on this.

Phil Boling
Dallas TX

Mr. Boling: Probably the reason your Sar-
gon IIT will no longer boot when the modi-
fied F8 ROM is installed on the motherboard

is that the program is performing a ‘‘check-
sum’’ of ROM memory. If the checksum
does not match a specified value, the pro-
gram knows nonstandard ROMSs are present
and it will not run.

To get around this you might try reinstall-
ing the autostart F8 ROM on the mother-
board and installing the modified ROM in
your Integer card. Then boot Sargon III with
the Integer switch down. After the program
has started, flip the Integer card switch up
and then hit RESET. Hopefully you will end
up in the monitor when the **:" or **-"’ key
is hit. If this does not work, try removing
Yyour 16K RAM card from slot 8.

S-C Clarifies

It was a great pleasure to see Jeff Thomas’
review of the S-C Macro Assembler in issue
no. 7 of Hardcore COMPUTIST. We're al-
ways happy to hear from a satisfied
programmer who appreciates our work.

I would like to correct one error in his ar-
ticle, and to explain why we use type “I"’
source files. First, the source code for the as-
sembler is not provided as part of the pack-
age; it is available at extra cost. Registered
owners of S-C Macro Assemblers Version 1.1
may purchase the completely commented
source code on disk for $100. I know of no
other professional quality assembler on the
Apple that supplies source code for the as-
sembler at any price.

About the type ““I"* files: This feature al-
lows the assembler to masquerade as Integer
BASIC, providing complete DOS trans-
parency and permitting you to switch be-
tween the assembler and Applesoft with the
INT and FP commands. It also allows DOS
to handle the source files with fast LOAD
and SAVE commands rather than by the
much slower Text file routines. As Jeff men-
tioned, it is easy to assign distinctive file-
names to your assembler source files. We
usually use a prefix of ‘“S.”” on our source
code files, and “*B.”’ on the Binary object
files.

That’s all for now. Thanks for both of you
fine magazines, and keep up the good work.

Bill Morgan
S-C Software Corporation
Dallas TX

Bill: The error in the review was not Jeff’s,
but was due to an editorial insertion of ours.
What we meant to say was that the code was
available, not provided.

More On RESETSs

I found the article, “Whiz Kid”’, very in-
teresting. I also liked the protection scheme
mentioned. But there is one protection
scheme I have not seen in any magazines.
This protection scheme is to disable the Reset
button of the Apple II, II+ and //e. I am
a new subscriber to your magazine, so I'm
not sure if you have published this protec-
tion scheme I’m about to mention.

In most programs on the market, if you
hit the reset button it will either boot the disk
or remain the same. If you hit the reset in
Copy][Plus 4.3, the main menu will appear.
If you hit it again, it will stay the same. I have
done this in Applesoft, and have a list of
both types of reset disable schemes. They are
as follows:

POKE 1010,213:POKE 1011,203:
CALL -1169

The second disable scheme occured when
1 was entering a huge program. I placed the
reset disable scheme on line @, but I typed
CALL -1168 by mistake. When I hit reset it
booted the disk. This second reset scheme is
as follows:

POKE 1010,213:POKE 1011,203:
CALL -1168

I hope that you place these protection
schemes in your next issue of Hardcore.

P.S. I have one question. How do you get
the red sphere in Zork II The Wizard of
Frobozz?

Jeff Lucia
W. Caldwell NJ

Mod? ROMS

I thought Ernie Young’s article on modi-
fied ROMs was one of your best ever. At the
time I read it, I had coincidentally just ob-
tained an EPROM Programmer, so I im-
mediately burned a Super Saver EPROM
and inserted it in my Franklin Ace 1008
(which, by the way, uses EPROMs for its
ROM memory, eliminating the need for a
conversion socket). After using it awhile I
decided to make a couple of minor changes.

Upon powering up, I always want to boot
a disk, so I might as well have the monitor
do this automatically without having to hit
the return key. This can be accomplished by
a little vector swapping. Instead of passing
control from the reset vector directly to the
Super Saver routine and then to the routine
at $FA62 if return is hit, we can go first to
$FA62. If the computer decides this is a
powerup, it will then boot the disk. If not,
we can then substitute a jump to the Super
Saver routine instead of the vector at $3F2.
Finally, we complete the path by placing an

indirect jump to the address at $3F2 in the
Super Saver routine.

In the original Super Saver, the NMI and
reset vectors were changed as follows:

$FFFA: CD FE CD FE

To swap vectors, the following three ad-
ditional changes can be made:

1) $FFFC: 62 FA
2) $FAA4: FA FF
3) $FEEI: F2 63

The first change actually just restores the
reset vector to its normal value in the au-
tostart monitor. The second indirectly uses
the new NMI vector to pass control from the
normal autostart reset to the Super Saver.
The third readjusts the destination of the Su-
per Saver reset when the return key is hit.
Thus, the new routine will be bypassed when
the computer is first turned on, but will be
entered if the reset key is pressed.

The second change involves the key that
must be hit after the Super Saver subroutine
has been entered. You’ll recall that hitting
reset causes the computer to freeze; what the
computer does next depends on whether the
minus sign, the colon, or the return key is
hit. the pertinent section of the routine reads:

LDA KEYBOARD
CMP #-

BEQ MONITOR
BCS NEW STUFF
JMP RESET

If the key pressed equals the minus sign,
the monitor is entered. However, the BCS
NEW STUFF means we will branch to NEW
STUFF not only if the colon key is hit, but
if any key with an ASCII value greater than
2D (the minus sign) is hit, This includes all
the normal characters on the keyboard,
greatly increasing the possibility of acciden-
tally clobbering a program when using reset
for its normal purpose. A more specific test
would be:

LDA KEYBOARD
CMP#-

BEQ MONITOR
CMP#:

BEQ NEW STUFF
JMP RESET

This routine is slightly longer than the
original, but there is still room for it. We do,
however, have to adjust our jump over the
CRMON routine ($FEF6-FEFC, which must
remain intact). Once this is done, the modi-
fied hexdump is as follows:

$FECD: 2C 00 cO

$FEDO: 10 FB 8D 10 CO AD 00 CO
$FED8: C9 2D FO 7D C9 3A FO 03
$FEEO: 6C F2 03 BA 8E 01 29 AO
$FEE8: 00 B89 00 00 99 00 20 B9
$FEF0O: 00 01 4C FD FE EA 20 00
$FEF8: FE 68 68 DO 6C 99 00 21

C8 DO E6 84 3C 84 42 84
3E A9 09 85 3F A9 02 85
3D A9 22 85 43 20 2C FE
20 2F FB 20 58 FC 4C 59
FF 60

$FFOO:
$FF08:
$FF10:
$FF18:
$FF20:

Again, thanks to Mr. Young and Hard-
core for a great article.

Anybody out there know the parameters
for Flight Simulator I1? Also, I'd like to see
an article, should someone be inspired to
write it, on the use of ROM expansion
memory $C808-CFFF, with an eye towards
its use in softkeys.

Paul Mindrup
Los Angeles CA

Super-Text On The //e

(Note:A 1’ piece of 18 gauge solid copper
wire with the insulation removed from both
ends was attached to the following letter.)

Attached you will find a shift key modifi-
cation kit for the Apple //e. I own both an
Apple I1+ and a //e. Using the Super-Text
40-80 column word processing program and
desiring to use it with the //e at my office,
1 found that the shift key would not work.
The fix, after calling the Muse Co., was to
order their new ‘‘Professional” program be-
cause of various differences in the machines.

While waiting for the new unit, which I
think was well worthwhile, I read about Visi-
dex using a different paddle button to check
for the shift key. So, I inserted the jumper
wire between pins #2 and #4 in the game
socket of the Apple //e and PRESTO!, it
would now shift with the 40-80 program.

While the newer program does make bet-
ter use of the //e, I have yet to find a
problem with using the older one this way.
I wonder how many other I + programs, sit-
ting on the shelf unused, might be put back
to work with this modification by someone
who now owns a //e?

Gerald P. Gibson
Dallas TX

Mommy, Will Kool-Aid Hurt
My Disk?

Now that I'm a Hardcore COMPUTIST
subscriber, I need some help from you.
Would you be so kind as to help me out? My
problem is in trying to make a backup of my
young daughter’s programs. They include:
Story Machine, Face Maker, and Type
Attack.

Maybe I missed how to do these in your
past issues of Hardcore COMPUTIST. If so,
please help me out.

Thank you for the information that I
couldn’t find anywhere else.

L.P. Williams
West Warwick RI

Hardcore COMPUTIST no.9 5

L. P.: Sorry, we don’t have any sure-fire
method of backing up any of the programs
you mention. We have added them to our
“Most Wanted List”’ in order to solicit in-
formation from our readers

A Few Suggestions

I enjoy your magazine very much. I espe-
cially appreciate your concern (HC#6, p.4)
for us beginners. I especially like the items
presented in the INPUT column in reply to
readers’ letters. However, a few items were
omitted that would have helped us novices.
For example, on Page 5 Clay Harrell ex-
plained why he made the change to DOS at
$B942 (and I really appreciate this and his
other hints), but Dan Lui on Page 6 made
some similar changes with no explanation.
Very confusing. And this reduces the value
of the information. We see how to use the
softkey for Donkey Kong (which I don’t
happen to have), but without an explanation
of why he made the changes, we don’t see
how to apply the technique. I feel the editor
should have seen to it that Lui’s response be
expanded or added to using your own expla-
nations.

I hope you keep publishing Advanced
Playing Techniques. I think the idea is great;

DEAR AUTHOR:

Hardcore COMPUTIST welcomes articles
on a variety of subjects and would like to pub-
lish well-written material on the following:

* Softkeys * Utilities

* Hardware Modifications

* Advanced Playing Techniques

* DOS modifications

* Product reviews * Adventure Tips
* Original programs of Interest

* Do-lt-yourself hardware projects

* General interest articles

* Bit-Copy Parameters

Send your submission on a DOS 3.3 disk
using an Apple (or compatible) editing pro-
gram. Also enclose a double-spaced hard-
copy manuscript. Submissions will be mailed
back if adequate return packaging is in-
cluded.

Hardcore COMPUTIST pays on accep-
tance. Rate of payment depends on the
amount of editing necessary and the length
of the article (between $10 for a short soft-
key and $50 per typeset page for a full-length
article.) For softkeys, please enclose the
original commercial disk for verification). We
guarantee the disk’s return.

Softkey Publishing buys all rights and one-
time reprint rights on general articles, and ex-
clusive rights on programs. We may make
alternate arrangements with individual
authors, depending on the merit of the con-
tribution.

For a copy of our WRITER'S GUIDE send
a business-sized (20-cent) SASE (self-
addressed, stamped envelope) to:

Hardcore COMPUTIST, WRITER'S GUIDE,
P. O. BOX 44549, TACOMA WA 98444,

6 Hardcore COMPUTIST no.9

occassionally I have one of the games men-
tioned.

Which brings me to an important idea for
you. As you continue to publish softkeys and
APT’s, it is difficult for us to keep track of
what software is covered in which issue of
Hardcore or CORE. How about publishing
an index? Maybe in the last issue every year
like Consumer Reports and others.

I enjoyed the Modified ROMs article. But
it would have helped readers a lot if Mr.
Young had referenced some other articles
that have been published recently on the sub-
ject ,as he left out some critical information:
he never told us how to transfer the memory
of the computer to the EPROM!! If you, or
he had referenced the article in the Novem-
ber 1983 issue of Computers and Electron-
ics, the readers might have had a hint. Byte
magazine has also published on burning
EPROMs.

Another fact that would help a lot is a
source of inexpensive EPROM burners. I'm
sure there are several suppliers of Taiwan
EPROM burners around who will supply
them for around $6@. Otherwise, the burn-
ers are so expensive and out of reach of most
of your readers, that the article is of little
value.

Keep on publishing.

Ken Burnell
Adh-Dhahran
Kingdom of Saudi Arabia

Some Common Questions

I received my first issue of your magazine
and was very pleased with the content. Start-
ing a new subscription is sometimes like start-
ing to read a new book on page 109 and
wondering what you have missed. Reading
your magazine makes me wonder what I
have missed in the previous issues. This leads
me to the following questions.

1. Are back issues available?

2. If so, do you identify the contents of the
back issues?

3. If available, what is the cost and how do
I order?

4, Is the CHECKSOFT program in a back
issue?

5. Is information available on DEMUFFIN
PLUS in back issues?

In Issue #7, the lead paragraph of the
MOST WANTED LIST indicated that you
have received numerous softkeys for ‘‘Sen-
sible Speller’’. This program frustrates me
to no end. I have boot traced it from $800
through $200 and $300 through $400. Be-
cause of the self-modifying code in $300, I
have only been able to list $400, but cannot
“RUN"’ it without losing control of the pro-
gram. Any help would be appreciated. Lock-
smith 5.0 (revision F), still will not copy it.

A note on the MOST WANTED LIST
#18, “The Accountant” by Decision Support

Software, purchased in November 1983 (ver-
sion 5), has no protection and comes with
an errata sheet telling the user to ignore the
““Game Port” hardware installation. My ver-
sion can be copied with COPYA.,

A note on the “Tax Advantage”” 1983 by
Continental Software. The only protection
used is a changed routine as follows: CALL
-151, then type B993:41. This branches
around the I/O ERROR and allows the read.
I then use FID to transfer the files to a previ-
ously INIT-ed disk with HELLO deleted.
After all of the files have been transferred
to the new disk, I wrote the following HEL-
LO program, to boot the disk.

NEW
10 REM BOOT TAX ADVANTAGE
20 D$= CHRS$(4)

30 PRINT D$; “RUN TTA.PROG.”
49 END

SAVE HELLO

I modified the print program to read my
clock card so that my printouts were dated
and therefore, not confusing when I was do-
ing what-ifs.

Keep up the good work and let me know
how to obtain the previously published info
on how to modify ‘“PROTECTED’’
software.

Robert. C. Taylor
Annapolis MD

Mr. Taylor: You can find information on
back issues of Hardcore COMPUTIST on
the inside back cover of this issue. We have
not yet published a cumulative index of our
magazines so unfortunately there is no easy
way to tell what information is contained in
a specific issue.

The Checksoft and Checkbin programs
were first published in Hardcore COM-
PUTIST no.1 and are also reprinted in ““The
Best of Hardcore.”’ Instructions on creating
DeMuffin Plus were reprinted in Hardcore
COMPUTIST no. 8 on page 15.

Last, but not least, see page 9 of this is-
sue for Cris Rys’ article on how to back up
Sensible Speller 4.0.

Screenwriter II, V. 2.2

Concerning the backup procedure for
Screenwriter II, Version 2.2: IT WORKS!
(Ref. HC#7, pg. 4)

Dr. James N. Snaden
Newington CT

READERS’ SOFTHEY & COPY EXCHANGE

Backing-UP
VISIDEX
By Anthony L. Barnett

Visicorp

2895 Zanker Road
San Jose, CA 95134
$250.00

Requirements:

48K Apple

One disk drive with DOS 3.3
Visidex

One blank disk

COPYA

Visidex is a key-word index program
which has some data storage and retrieval
procedures which I have not seen in any
other program for the Apple. Its retrieval of
data by keyword is very fast.

In Hardcore COMPUTIST No. 3 (page 6)
in my softkey for Visitrend/Visiplot, I ex-
plained the problems in obtaining backups
from Visicorp when overseas. I notice in
Hardcore COMPUTIST No. 5 that Bob
Bragner describes similar problems in his
softkey for Visifile. The same problems ap-
ply to Visidex.

Though I have been able to copy Visidex
using the long list of Locksmith parameters
described in Hardcore Vol. 1 No. 3, I decid-
ed that an unprotected backup would be
more convenient. For one thing, the disk
could also be used to store other files instead
of being wasted on one 17K file.

During the course of my examination of
the Visidex disk, I discovered that unless the
DOS from the original disk is present, Visi-
dex data disks may become corrupted. I also
noticed that apart from the dummy serial
number, there appeared to be only two very
short binary files, namely VISIDEX and VI-
SI0.8. It turns out that VISIDEX is a load-
er file which uses an RWTS routine to load
the whole program into memory.

After some experimentation, I found the
following procedure to work.

1) Use COPYA to make a copy of Visidex.
2) UNLOCK and DELETE the file named
VISIDEX on the copy.

3) Boot the copy and wait for it to produce
the FILE NOT FOUND message.

4) Insert the original and

BLOAD VISIDEX

5) With the original still in drive 1, enter the
monitor with

CALL -151

6) From the monitor type

60A3:69 FF
7) Type
6000G
8) When the drive stops, you should still be
in the monitor. Remove the original and in-
sert the copy.
9) Type
INIT VISIDEX
10) When initialization is complete, type
DELETE VISIDEX
11) Type

BSAVE VISIDEX,A$803,1.84404

The disk so produced, if booted, will run
Visidex.

Steps 1 to 3 enable you to get Visidex’s
DOS into memory.

Step 4 gets the program loader into
memory.

Steps 5 to 7 cause a jump to the monitor
before the Visidex program is run. The tech-
nigue here is the same as used with boot code
tracing. At $60A2 is the jump out from the
loader to the Visidex program at *803. Step
6 alters this to a jump to $FF69 which is the
monitor entry address.

During the course of the load, the file VI-
SIO0.8 is loaded at $4C00. The essence of this
file is 6 NOP’s and one RTS. Thus, the ef-
fective program begins at $803 and ends at
$4C06.

Step 9 is necessary because a DISK FULL
message is received if you attempt to BSAVE
the program at this point. Be careful not to
INIT the original. It is a good idea to keep
a write protect tab on original program disks.

Step 10 prevents a FILE TYPE MIS-
MATCH error when BSAVEing the
program.

The only difference between this version
and the original that I can detect is the
response to a RESET. In the original, this
usually took you to a “BOOT FROM SLOT
6"’ message. In the copy, RESET dumps you
back to Applesoft.

For those of you who want to make
patches to the program, be warned. The pro-

gram makes extensive use of “‘funny
jumps’’, i.e. pushing an address onto the
stack and then doing an RTS to get there.

Now if anyone knows how to backup DB
Master Version 4...

Softkey For MUSIC
CONSTRUCTION SET
By Jim Waterman

Electronic Arts

2755 Campus Drive
San Mateo, CA 99403
$40.00

Requirements:

Apple II Plus, or compatible

Music Construction Set

Bit-copy program such as Locksmith 4.1 or
Copy I+ ver 4.1

One blank disk

1) Use your bit-copier to copy tracks $8-$22
from the Music Construction Set onto a
blank disk.

2) Boot a normal 3.3 disk.

3) Insert the copy of Music construction Set
and load the file called A4

LOAD A4

4) Enter the monitor and change the bytes
at $913A-8913B to NOP’s

CALL -151
913A:EA EA

5) Save A4 with the changes you have made
BSAVE A4,A$4A808,L4B66

6) The Music Construction Set may now be
copied with any normal copy program such
as COPYA.

Deprotecting
GOLD RUSH

By Clay Harrell

Sentient Software
P.O. Box 4929
Aspen, CO 81612
$34.95

Requirements:

48K Apple II with at least one DOS 3.3 disk
drive

Old style F8 monitor ROM or Super Saver
ROM

Hardcore COMPUTIST no.9 7

Blank disk
GOLD RUSH

It seems that there are many ‘““maze”
games flooding the Apple market, now.
Most have pretty much the same theme of
eating all the dots before you get destroyed.
I do enjoy these games, but variety is the
spice of life!

Gold Rush uses the ‘‘avoid the bad guys’’
theme without the maze. It is entertaining,
fun, and different from other chase ’em
games. Being intrigued by the game, I want-
ed to learn more about it...

Gold Rush boots fairly quickly and is a
“‘single load” game, which means it does not
require any other data from the disk after
the initial load. These types of programs are
candidates for BLOADable files. When
booting the disk, an Applesoft prompt ap-
pears at the bottom left of the screen which
means there is some sort of modified DOS
present. Disks like these are excellant candi-
dates for deprotection with Super 10B.

The‘‘Swap” controller is probably the
most versatile since one doesn’t usually have
to figure out the protection used when us-
ing it. With this in mind, we merely boot
Gold Rush, reset into the monitor and move
RWTS from $B888-BFFF down to $1960
where the standard Super IOB swap oper-
ates. This is done from monitor with the
command

1968 <B8#8§.BFFFM

Now boot a 48K slave disk and run Super
IOB.SWAP. Remember that booting a slave
disk only destroys memory from $06-8FF
and $9600-BFFF, so this keeps our Gold
Rush RWTS safe at $1908-20FF.

After making the copy, our new disk is
quite CATALOGable. Also, the disk is now
deprotected and completely copyable with
COPYA and runs fine (providing the boot
file name is ‘“BOOT"’ instead of the normal
‘““HELLO’"). But remember, this is a single
load game, and as I mentioned before, a
good candidate for a BLOADable file.

Typing

CATALOG
reveals one file named ““BOOT’’. You can
BRUN this file and the game will load and
execute just fine. But we want this game in
a file that we can FID to another disk or
BLOAD. To start the analysis, type

BLOAD BOOT
Now enter the monitor with

CALL -151
and type

AAGH.AATI

The first two bytes listed are the length of

8 Hardcore COMPUTIST no.9

the last BLOADed file, and the last two bytes
listed are the address the last BLOADed file
was loaded at. These are in ‘‘bassackward”’
order, with the low byte first and the high
byte last (in other words, #9 @3 means
$0360, or 88 45 means $4588). We can see
from this listing that the file “BOOT"’ loads
at $300 and is fairly short (less than $100
bytes long).

If you examine the code at $300, you will
find that Sentient is using second stage DOS
to load in the game from $808 to $95FF, and
then jumps to $BA@ to start the game.

Sentient Software RWTS is not as friend-
ly as the normal RWTS. They load $1B with
the track number, $1C with the sector num-
ber and $1F with the top page to load to.
Then they jump subroutine to $B7B5 to do
the load. Look at the code and try to under-
stand it (If you cannot, well, forget it).

After some groaning and grunting, we
now know that Gold Rush loads from $806
to $95FF and starts at $BA@. With this neces-
sary information in hand, here are the exact
steps for deprotecting Gold Rush:

1) Boot DOS 3.3 and INITialize a disk with
a null hello file.

FP

INIT HELLO
2) Boot Gold Rush and after the game loads
and the drive stops spinning, reset into the
monitor

3) Move page eight out of the way so we can
boot

6468 < 800 .8FFM

4) Boot the disk you just initialized
C688G

5) Enter the monitor
CALL -151

6) Move $800 to its original location
800 <6480 .64FFM

7) Alter the program so that it JuMPs to the
entry point

TFD:4C 08 0B

8) Tell DOS that we can BSAVE more than
121 sectors

A964:FF
9) Save Gold Rush
BSAVE GOLD RUSH,ASTFD,LSSEIM

Gold Rush is now deprotected into a
BRUNable file that you can FID to any disk.

Short Softkey For
VISITERM

By B. Baker

Visicorp

2895 Zanker Road
San Jose, CA 95134
$100.00

Requirements:

Apple II family with 48K
One blank disk

A sector editing program

1) Copy the disk, using COPYA

2) Use the sector editor to read track $15,
sector $0E of the backup disk.

3) Change byte $DF from $B@ to $90 and
write the sector back to the disk.

Deprotecting
COSMIC COMBAT

By Clay Harrell

Cosmic Combat

Highland Computer Services
14422 SE 132nd

Renton, WA 98856

Requirements:

48K Apple with at least

one DOS 3.3 disk drive

Old style F8 monitor ROM or
Super Saver ROM

Blank disk

Cosmic Combat

Super IOB with Swap Controller

Cosmic Combat is a cute shoot-’em-up
with three levels of varied graphics. The
game uses standard XDRAW graphics that
all we wish we could use better than we do
now!

In order for us to examine the code that
makes Cosmic Combat tick and learn from
it, it is necessary for us to deprotect it.

Cosmic Combat uses a modified DOS for
its protection. We know this since when we
boot the game, the Applesoft prompt ap-
pears at the bottom left of the screen, and
the boot sounds 'normal’ (listening to a pro-
gram boot can sometimes reveal quite a bit
about the protection used!)

The first thing I always try when
deprotecting a program that uses a modified
DOS is to defeat the DOS error checking
routines (from normal DOS) and try
CATALOGing the disk. To do this, enter the
monitor with CALL -151 and change byte
$B942 from 38 to 18. What this does is defeat
all the DOS error checking routines that Ap-
ple so carefully put in for us. If you do this
with Cosmic Combat, you will be disappoint-
ed when you type ‘“CATALOG"’ because all
sorts of garbage will appear on the screen.

Continued on page 31

Sensible Speller Softkey

Sensible Speller Version 4.8
Sensible Software

6619 Perham Drive West
Bloomfield, MI 48633
(313) 399-8877

$125.00

Reguirements:

Apple 11,11+

16K RAM CARD

Blank Disk Sensible Speller V 4.0

Super IOB or any DOS track copy program

Sensib le Speller version 4.0 is a very use-
ful dictionary program which has a vocabu-
lary of over 88,000 words. The softkey of
this program incorporates a very useful util-
ity of the language card. This utility is cus-
tomizing the monitor routines so when you
press the RESET key, you arrive in the mo-
nitor. Unfortunately, this was the only way
I could get a deprotected version of the pro-
gram. If you don’t have a language card
(separate from the motherboard) you won’t
be able to use the following procedure.

1) With the computer off, put your 16K card
in slot one.

2) Boot up the DOS 3.3 master disk.

3) Enter the monitor

CALL-151

4) Modify DOS so that the
SPELLER.LOADER program will work.

B639: AD 81 cO AD 81 CO 4C B3 08
B6B3: AO 00 B9 00 DO

B6B8: 99 00 DO C8 DO F7 EE B?
B6CO: 08 EE BA 08 AD BA 08 DO
B6C8: EC AD 80 cO A9 07 8D 00
B6D0: 02 4C 00 B7

5) Initialize the disk you want Sensible
Speller on with this modified DOS

INIT HELLO

6) Insert a different disk and key in the
SPELLER.LOADER program on page 10.
7) Save this program in the event of error

BSAVE SPELLER.LOADER,
ASB708,L39A

8) Type in this short machine language pro-

By Cris Rys

gram which calls the RWTS
803:A9 B7 A# E8 4C B5 B7

9) Tell the RWTS that we wish to write track
zero, sector one from page $B7

B7EB:00 60 61
B7F8:06 B7 06 09 02

16) Insert the disk you initialized in step 5
and write the sector

883G

11) Now copy tracks 2-3 and 6-22 of your
original Sensible Speller disk to the disk you
initialized in step 5. These tracks are not pro-
tected but you must use a copy program
which will copy specific tracks (any bit copier
should do). The Super 10B controller listed
at the end of this article will also work.

Here is the routine I mentioned at the be-
ginning of this softkey. Sensible Speller, like
many other programs, checks for a RAM
card in slot zero. Because several programs
(such as Sensible Speller) only check slot 8,
this technique may be used with other pro-
grams as well.

12) Boot a normal DOS disk and enter the
monitor

CALL-151
13) Write enable the language card
C891 C891
14) Copy the monitor into the language card
F808 <F860 .FFFFM
15) Read and write enable the language card
C#93 CH93
16) Type in the SPELLER.SAVER program
from page 19 and save it on the same disk

you saved SPELLER.LOADER on

BSAVE SPELLER.SAVER,
ASD#B6 ,1.560

17) Type a routine to save page zero into
page $71 when RESET is hit

FA62:A2 86 B5 86 9D 66 71
E8 D8 F8 4C 59 FF

18) Read enable and write protect the lan-
guage card RAM

Ca99

Hardcore COMPUTIST no.9

19) Insert your original Sensible Speller disk
and boot it

Co8 G

20) When the menu appears and the disk
drive stops running, press RESET. You
should now be in monitor.

21) Read enable the language card in slot 1

Ca99

22) Insert the disk you want Sensible Speller
on and invoke the SPELLER.SAVER
program

D888 G

The disk drive will start whirling and af-
ter a while the cursor will come back. You’re
done! Now may be a good time to put the
language card back in slot zero, but it is not
necessary to do this to run this program.
Don'’t forget to turn the computer off first.

SPELLER.CON

1000 REM SENSIBLE SPELLER HELPER

1010 TK = 2:ST = D:LT = 35:CD = W
R

1020 T1 = TK: GOSUB 490

1030 GOSUB 430: GOSUB 100:ST = S
T+ 1: IF ST < DOS THEN 1030

1040 IF BF THEN 1060
1050 ST = 0:TK =TK + 1 + 2 * (TK
=3): IF TK < LT THEN 1030
1060 GOSUB 490:TK = T1:ST =0
1070 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1070

1080 ST=0:TK=TK +1 + 2 * (TK
=3): IF BF = 0 AND TK < LT
THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT : PRINT '"DONE
WITH COPY'": END

SPELLER.LOADER

B700: 2C 50 CO 2C 57 CO 2C 52
B708: CO 2C 55 CO A9 OF 8D ED
B710: B7 A9 07 8D EC B7 A2 D1
B718: 8E EA B7 CA BE FO B7 A9
B720: 5F 8D F1 B7 20 64 B7 CE
B728: F1 B7 AD F1 B7 C9 40 BO
B730: F3 A9 3A 8D F1 B7 20 64
B738: B7 CE F1 B7 AD F1 B7 C9
B740: 08 BO F3 A9 03 8D F1 BY
B748: 20 64 B7 A9 77 8D F1 BY7

B750: 20 64 B7 A9 71 8D F1 B7
B758: 20 64 B7 AD 51 CO AD 54
B760: CO 4C BA B7 A9 01 8D F4
B768: B7 A9 B7 AD EB 20 B5 B7
B770: CE ED B7 10 14 A9 OF 8D
B778: ED B7 CE EC B7 AD EC B7
B780: C9 03 DO 05 A9 01 8D EC
B788: B7 60 A2 00 BD 00 71 95
B790: 00 E8 DO F8 20 75 32 4C
B798: D9 33

$D9F9
$C1F9
$642C
$4728
$1BBD
$89AF
$8CB6
$21Cé6
$860E
$3558

$4976
$A103
$6640
$366A
SFADA
$C5F4
$EOBS
$CB95
$1FE9
$DC97

10 Hardcore COMPUTIST no.9

D000:
DO08:
D010:
D018:
D020:
D028:
D030:
D038:
D040:
D048:

DO50:
D058:

1000 =

A9
EC
8E
20
87
F1
F1
F1
B7
87

CE
0]

OF
B7
FO
3A
c9
B7
B7
BY
AO
10

EC
05

8D ED B7 A9 05
A2 01 8E EA B7
B7 A9 3A 8D F1
DO CE F1 B7 AD
08 BO F3 A9 03
20 3A DO A9 77
20 3A DO A9 71
A9 02 8D F4 B7
E8 20 B5 B7 CE
14 A9 OF 8D ED

B7 AD EC B7 C9
A9 01 8D EC B?

SPELLER.SAVER

8D
CA
B7
F1
8D
8D
8D
A9
ED
B7

03
60

SPELLER.LOADER

SOURCE CODE

$5713
$48AB
$2A32
$6C61
$0858
$1E6E
$E7BE
$906A
$7EAB
$6F4D

$9EA3
$37FA

1010 * SPELLER.LOADER

1020 = THIS LOADS WHAT USED TO BE
1030 » PART OF SENSIBLE SPELLER
1040 » WHILE IT IS BOOTING

1050 *

1060

1070 -OR $B700
1080 .TF SPELLER.LOADER
1090

1100 DRIVE .EQ $BTEA
1110 TRACK .EQ $B7EC
1120 SECTOR .EQ $B7ED
1130 BUFHI .EQ $B7F1
1140 COMMAND .EQ $B7F4
1150 RWTS .EQ $B7BS
1160 BIT $C050
1170 BIT $C057
1180 BIT $C052
1190 BIT $C055
1200 LDA #SF
1210 STA SECTOR
1220 LDA #87
1230 STA TRACK
1240 LDX #1
1250 STX DRIVE
1260 DEX

1270 STX BUFHI-1
1280 LDA #$5F
1290 STA BUFHI
1300 LOOP1 JSR READ
1310 DEC BUFHI
1320 LDA BUFHI
1330 CMP #840
1340 BCS LOOP1
1350 LDA #83A
1360 STA BUFHI
1370 LOOP2 JSR READ
1380 DEC BUFHI
1390 LDA BUFHI
1400 CMP #8
1410 BCS LOOP2
1420 LDA #83
1430 STA BUFHI
1440 JSR READ
1450 LDA #877
1460 STA BUFHI
1470 JSR READ
1480 LDA #8571
1490 STA BUFHI
1500 JSR READ
1510 LDA $C051
1520 LDA $C054
1530 JMP EXIT
1540 READ LDA #1
1550 STA COMMAND
1560 LDA #$B7
1570 LDY #SEB
1580 JSR RWTS
1590 DEC SECTOR
1600 BPL RTS1
1610 LDA #SF
1620 STA SECTOR
1630 DEC TRACK
1640 LDA TRACK
1650 CMP #$3

1660

1670

1680

1680 RTS1
1700 EXIT
1710 LOOP3
1720

1730

1740

1750

1760

BNE RTS1
LDA #1
STA TRACK
RTS

LDX #0
LDA $7100,X
STA $0.X
INX

BNE LOOP3
JSR 83275
JMP $33D8

SPELLER.SAVER
SOURCE CODE

1000 *

1010 = SPELLER.SAVER

1020 = THIS FILE SAVES THE SENSIBLE
1030 = SPELLER FROM MEMORY TO
1040 » VARIOUS SECTORS OF AN

1050 = UNPROTECTED DISK

1060 *

1070

1080

1090

1100

1110 DRIVE
1120 TRACK
1130 SECTOR
1140 BUFHI
1150 COMMAND
1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260 LOOP
1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390 WRITE
1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540 RTS1

.OR $D000
JF SPELLER.SAVER

EQ $BTEA
EQ $BYEC
EQ $BTED
EQ $B7F1
EQ $B7F4
LDA #$F
STA SECTOR
LDA #85
STA TRACK
LDX #1
STX DRIVE
DEX

STX BUFHI-1
LDA #8$3A
STA BUFHI
JSR WRITE
DEC BUFHI
LDA BUFHI
CMP #88
BCS LOOP
LDA #33
STA BUFHI
JSR WRITE
LDA #877
STA BUFHI
JSR WRITE
LDA #871
STA BUFHI
LDA #2
STA COMMAND
LDA #$B7
LDY #sE8
JSR $B7BS
DEC SECTOR
BPL RTS1
LDA #$F
STA SECTOR
DEC TRACK
LDA TRACK
CMP #33
BNE RTS1
LDA #1
STA TRACK
RTS

g

Dear Subscribers:

CHECK YOUR LABEL. Your
subscription may expire
with this issue.
You may renew your sub-
scription using the form on
page 23.

By Ray Darrah

Requirements:

An Apple][Plus
Disks that need to be modified

Editors note: Although *‘Super IOB"’ has ap-
peared in **The Best of Hardcore Comput-
ing, "’ the text and program that follows have
been updated. The main difference is the ad-
dition of a subroutine to the program but
subtle changes have been made in the article
as well.

As Hardcore COMPUTIST readers may
recall, the IOB program is a simple BASIC
program that performs softkeys. IOB stands
for Input Output control-Block. It is a list
of parameters used by the Read Write Track
Sector (RWTS) subroutine.

In the course of time, HARDCORE
COMPUTING (old series) and Hardcore
COMPUTIST have published several IOB
programs (or [OB modifications). These
were useful not only for copying different
types of disks but for configuring the pro-
gram to different machines.

Presented here is an advanced version of
the original IOB program. We’re calling it
“‘Super 10B.” Included are the most useful
subroutines from all the previous IOB pro-
grams. Some new features:

1) The controller isn’t spread throughout the
program.

2) Half tracks can be accessed.
3) Super 10B is self-configuring.

4) Incorrectly numbered tracks can be
copied.

5) The controller performs sector modifica-
tions DURING the copy process.

6) A range of seven tracks are read at one
time to cut down the disk swaps on single
drive systems.

7) Super IOB can do everything MUFFIN
PLUS and DEMUFFIN PLUS can.

8) Automatic error trapping is now included.

disks that have been protected with a 13 sec-
tor format.

RWTS.13

To read the protected DOS 3.2 disks, Su-
per 1OB uses an image of the 3.2 RWTS. By
performing a swap of the image with the
RWTS currently in memory, diskettes with
different formats can be accessed.

Use BOOT13 from the system master disk
to get DOS 3.2 into your 3.3 machine.

Once DOS 3.2 is booted up, all you have
to do is BSAVE the RWTS.

BSAVE RWTS.13,A$B86#,L.$306

What It Does

Super 10B de-protects disks by pushing
the RWTS to its upper-most limits. Because
of this, it only works on disks with sectors
somewhat resembling normal DOS. Before
a disk can be “Softkeyed”’, the protection
scheme must be determined. The easiest way
to do this is to use a program (like ‘““The
CIA™, “Bag of Tricks’’ or “DiskView’")
which allow you to discover the difference
between normal sectors and the ones on the
intended disk.

Once the protection has been discovered,
all that needs to be done is the insertion of
a controller program (lines 1060 through
9999) into Super IOB. Here is a list of the
protection schemes Super IOB was designed
to Softkey:

1) Altered data, address, prologue, or epi-
logue marks

2) Strangely numbered sectors or tracks
3) Modified RWTS (with same entry con-
ditions)

4) Half tracks for any of the above

5) Thirteen or 16 sector format for any of
the above

The following is a brief description of each
protection scheme and how it relates to Su-
per 10B:

—— Using The Program
Start by entering the Applesoft listing, then

SAVE SUPER 10B
Next, enter the hexdump and
BSAVE 10B.OBJ#,A$368,1L35C

A third file is required in order to copy

Altered Marks

Making mark alterations to DOS is a tech-
nique that is used on a lot of the earlier disks.
DOS puts certain reserved bytes on the disk
(during INITialization) so it can tell where
a sector (and other valuable information) be-
gins. For example, a normal 16-sector disk
has the bytes: D5 AA AD designating the
start of the data field which contains the 256
bytes of data in encoded form. When a stan-

dard RWTS tries to find a sector, it looks
for these marks. If they are not found (either
because they don’t exist or they have been
changed to something else) DOS returns with
the dreaded I/O ERROR.

The sequences of the four reserved-byte
marks (start of address, end of address, start
of data, end of data) are handled by subrou-
tines in Super IOB. These subroutines sim-
ply change the marks the RWTS looks for
or modify the RWTS so that it doesn’t look
for them at all (depending upon the mark).

— Strangely Numbered Sectors —

On some disks the numbers which tell the
RWTS what sector is currently passing un-
der the read/write head, have been tampered
with. These disks are easily softkeyed with
Super IOB. The controller simply reads us-
ing the strange sector numbers.

“‘Super 10B deprotects disks by
pushing the RWTS to its upper-
most limits. Because of this, it
only works on disks with sectors
somewhat resembling normal
DOS. Before a disk can be ‘‘Soft-
keyed’’, the protection scheme
must be determined.”’

This works because the RWTS compares
the sector number found on the disk with the
one the controller is looking for (even if it
is higher than 15). Later, when writing, stan-
dard sector numbers are used, thus de-
protecting the disk!

——— Modified RWTS ——

The disk-protectors will often rearrange
and/or modify the standard RWTS subrou-
tine. When this happens, all one has to do
is to make a controller program which reads,
using the strange RWTS and then swaps with
anormal RWTS and writes the information
back out.

Since the RWTS of a protected disk will
be modified to read any altered DOS marks,
this is a good method to use if you are una-
ble to determine what they have been
changed to.

— Anatomy Of A Controller —

Before we attempt to write a controller,
let’s look at its format. Here is an explana-
tion of the subroutines (and sub-programs)
in the Super IOB program that are at the
controller’s disposal.

1) Start Up
Lines 10-60

The first few lines identify the program.
Line 68, however, sets HIMEM and LOM-
EM so that they fit the memory usage re-
quirements (see memory map following). It
then goes to ‘“‘CONFIGURATION TIME.”

2) Initial IOB Set-Up
Line 80

Hardcore COMPUTIST no.9 11

This subroutine is normally GOSUBed via
“TOGGLE READ / WRITE." Its purpose
is to reset the buffer page and set the drive
number, slot number and volume number to
the disk to be accessed next.

3) R/W Sector
Line 100-110

This subroutine is GOSUBed directly from
the controller. It reads or writes (depending
upon CD) at the specified track and sector.

4) Move S Phases
Lines 130-140

Moves the disk drive head by the number
of phases specified by S; one phase equals
one half-track. It is capable of moving in
either direction up to 128 phases (or 64
tracks). When moving the head, this routine
doesn’t let the RWTS know that the head has
been moved. Therefore, this subroutine
makes it possible to copy disks that have
track mismarkings. Care should be taken
when moving a great number of phases that
PH + S isn’t greater than 255 or less than @,
otherwise an error will occur.

5) Ignore Checksums & End Marks
Line 178 (16 sector RWTS)
Line 278 (13 sector RWTS)

These routines do a few
POKEs into their cor-
responding RWTS. The final
result is that the RWTS no
longer looks for epilogue marks or check-
sums when searching for a sector.

6) Altered Address Marks
Line 199 (16 sector RWTS)
Line 290 (13 sector RWTS)

These modify the RWTS (via POKE) so
that it looks for a different sequence of ad-
dress prologue marks. The decimal values of
the marks to look for should be stored in
DATA statements in the “DATA FOR
MARKS’* area.

7) Altered Data Marks
Line 218 (16 sector RWTS)
Line 310 (13 sector RWTS)
These are the same as the previous subrou-
tine except for DATA prologue marks.

8) Normalizer
Lines 230-240 (16 sector RWTS)
Lines 330-34@ (13 sector RWTS)

This restores the values in the RWTS
subroutine that are messed up by the three
previous routines. This routine should be
called just before writing, when using only
one RWTS (assuming of course that one of
the previous routines was called before
reading).

9) Exchange RWTS
Line 360

This is the standard swap RWTS’s routine.
It exchanges the RWTS at $1980 with the
one at $B8@A, which is the normal residing
place for an RWTS. To tell the swap rou-
tine (which is invoked by a CALL 832) what

12 Hardcore COMPUTIST no.9

to exchange, a few POKEs must be execut-
ed. They are:

POKE 253, start of first location
POKE 255, start of second location
POKE 224, number of pages (a standard
RWTS is eight pages long)

10) Format Disk
Lines 380-419

Formats the target disk. This is meant to
be used before the softkey operation begins
(and is GOSUBed by ‘“CONFIGURATION
TIME") but can be called by the controller
should the need arise.

11) Print Track & Sector #
Line 430

This is the subroutine that puts the cur-
rent track and sector number at the top of
the screen during the softkey operation.

12) Center Message
Line 450

Centers a message (contained in A$) at the
current VTAB position and RETURNS.

13) Print Message & Wait
Line 479
This routine uses “CENTER MESSAGE"

to print the intended message at a VTAB of
11 and then it prints ‘“PRESS ANY KEY TO
CONTINUE." After this, it waits for a key
to be pressed and RETURNS.

14) Toggle Read/Write
Lines 490-530

This routine toggles the state of CD (from
ReaD to WRite and vice versa) and prints the
current mode in flashing letters at the very

top of the screen. In addition, if the user has
only one drive, it asks him to swap disks. It
then exits via “INITIAL IOB SETUP,” thus
making the sector buffer ready for the next
operation.

15) Ignore Unreadable Sectors
Lines 550-590

If the controller should pay no attention
to unreadable sectors then somewhere in the
begginning of it should be an 'ONERR
GOTO 55@. This is used usually with
RWTS.13 (since DOS 3.2 sectors are unread-
able until they have been written to) but can
be used with any disk that has unreadable
sectors which should be ignored.

16) Controller
Lines 1000-9999

These are the line numbers set aside for
the controller. This area should have all of
the controller and subroutines (sector edits
and the like). Before using this, please see
the memory map that follows.

17) Configuration Time
Lines 10000-10090

This routine asks the user which slots and
drive numbers to use for the various disks.
It also formats the target disk if the user so
desires.

18) Get Slot & Drive #
Lines 10110-18130

Used by ‘““CONFIGURATION TIME” to
get SLot and DriVe information.

19) Get A Key
Lines 10150-10176

Used by “GET SLOT AND DRIVE#" to
wait for the appropriate drive or slot num-
ber to be typed.

28) Disk Error
Lines 10190-16270

This is the normal error-trapping routine.
If a disk error occurs, this routine will print
the error message, otherwise it will
assume that the error is in the con-
troller and the program will crash
(CALL 834).

21) Data For Marks
Lines 62010-63999

These line numbers should
contain the appropriate data
(if any) required for any al-
tered mark routine.

Note: in the above line
number description, the line
numbers consisting of REMs
have been ommitted. They
may be excluded (although it
is not recommended) when typing in the
program.

Now that you have an idea of the subrou-
tines, take a look at the following variables
and note how they relate to them, While ex-
amining the table on the next page, it would
be a good idea to observe the BASIC that
makes up the previously listed subroutines.
This will give you a better idea of how things
are accomplished in Super 10B.

Table 1

A - general temporary usage, scrambled
by “MOVE S PHASES.”

AS$ - holds message to pass to the user
via ‘‘CENTER MESSAGE’ and
“PRINT MESSAGE AND WAIT,”
scrambled by ‘““TOGGLE READ /
WRITE.”

A1,A2,A3 - scrambled by any ““AL-
TERED ADDRESS MARKS” or ““AL-
TERED DATA MARKS" routine, they
are READ from DATA statements and
POKEd into the appropriate RWTS
subroutine to change the marks it looks
for.

BS$ - altered only during configuration.

BF - buffer full, holds the status of the
sector buffer, set to 1 if the buffer is either

full or empty and to @ if neither; changed
only by “R/W SECTOR.”

BUF - buffer location, holds the ad-
dress where the RWTS is expecting to find
the page number of the sector; used by
“INITIAL IOB SETUP” and “‘R/W
SECTOR.”” A (PEEK(BUF)-1)%256 will
return the address of byte zero in the last
read sector.

CD - command code, used by the con-
troller and “TOGGLE READ /
WRITE,"” holds the current RWTS com-
mand code; only POKEd in by ‘“INI-
TIAL IOB SETUP” (see RD, WR, and
INIT)

CMD - Command code location, holds
the address where the RWTS is expect-
ing to find the previously stated command
code; used by ““INITIAL IOB SETUP.”
A POKE CMD,CD will change the IOB
command.

D1 - drive 1, set during configuration
to the drive number of the source drive;
used by “TOGGLE READ/WRITE".

D2 - drive 2, same as above except for
target drive.

DOS - Disk Operating System, the
number of sectors to read or write; initial-
ized to 16.

DRY - drive location, holds the address
where the RWTS is expecting to find the
drive number of the drive to be accessed;
used by “INITIAL I0OB SETUP” to
change the [IOB drive number. A
PEEK(DRY) will return the drive last ac-
cessed.

DY - current drive, used by “INITIAL
10B SETUP,” ‘TOGGLE
READ/WRITE” and ‘‘MOVE S
PHASES;"’ holds the drive number of the
drive to be accessed next.

ERR - error code, used by ““DISK ER-
ROR” to determine the error that has just
occured.

INIT - initialize command code, a
CD = INIT will set the command code to
format the diskette.

10 - Input/Output location, normally
holds a 768 (set during configuration);
CALLed by ““R/W SECTOR"’ to induce
the RWTS subroutine. To use a relocat-
ed RWTS, the controller must have a
10 =10 + 42 statement.

MB - maximum buffer page, holds the
last page of memory for the sector buffer;
used by “R/W SECTOR,” initialized
(during configuration) to 151 and should
be changed to 130 only when a 13-sector
disk is read or written.

OVL - old volume location, a
PEEK(OVL) will return the volume num-
ber of the previously accessed (via “R/W
SECTOR"") diskette.

PH - current phase, if “MOVE S
PHASES” is referenced (by the con-
troller), this variable must contain the
disk arms’ current phase number
(PH =2%TK).

RD - read command code, a CD =RD
will set the command to read the disk.

S - step, used to tell “MOVE S
PHASES” how may phases to step
through (-12¢ to 120).

§1 - slot 1, set to the slot number of
the source drive during configuration;
used by “TOGGLE READ/WRITE."’

S2 - slot 2, same as above except for
target drive.

SCT - sector number location, holds
the address where the RWTS is expect-
ing to find the sector to be accessed; used
by “R/W SECTOR” to tell the RWTS
which sector is to be read or written. A
PEEK(SCT) will return the last accessed
sector number.

SLT - slot number location, holds the
address where the RWTS is expecting to
find the slot number of the disk to ac-
cessed next; used by “INITIAL IOB
SETUP.”” A PEEK(SLT) will return the
last accessed disk’s slot number.

SO - slot number, used by *‘TOGGLE
READ/WRITE” and “INITIAL 10B
SETUP;”, holds the slot number of the
disk to be accessed next.

ST - sector number, used by the con-
troller to tell ““R/W SECTOR”’ what sec-
tor number is to be read or written next.

TK - track number, used by the con-
troller to tell “R/W SECTOR’ what
track is to be accessed next.

TRK - track number location, holds the
memory location where the RWTS is ex-
pecting to find the track to be accessed.
A PEEK(TRK) will return the last ac-
cessed track number.

YL - volume number, used by the con-
troller to tell “TOGGLE READ /
WRITE"” (which passes it to “INITIAL
I0B SETUP"’) the volume number of the
disk to be accessed next.

VLS - altered only by “FORMAT
DISK.”

YOL - volume number location, holds
the memory location where RWTS is
expecting to find the volume to be ac-
cessed. A PEEK(VOL) will return volume
number last used by the controller.

WR - write command code. A
CD = WR will set the command to write.

Memory Usage

Before actually looking at some con-
trollers, let’s say a few words about memory
usage.

Following, is a memory allocation table
for the various parts of Super IOB. It is ex-
tremely important to stay within the bound-
aries when writing a controller. Otherwise,
horrible things might happen (the least of
which would be the production of an incor-
rect copy).

Table 2

$0800 .918FF (2048-6399) intended
for the Applesoft part of Super IOB

$1900.$20FF (6400-8447) space allo
cated for a moved RTWS (RWTS.13
or other)

$2100.$26FF (8448-9983) BASIC
variable space

$2700.596FF (9984-38655) used for
the sector buffer

First, notice the amount of space availa-
ble for the BASIC program. The Super IOB
program as listed (with all REMs) ends about
1200 bytes short of the final designated lo-
cation. This means that the controller (and
all DATA statements) must fit into this 1K
area. In view of the space requirement, the
end of program should be checked by typing

PRINT PEEK(175) + PEEK(176)*256

before a new controller is used.

If it has exceeded the 6399 limit, I suggest
DELeting all subroutines not referenced by
the controller and all REM lines until it fits
within the allocated space.

However, if the program does NOT use
a relocated RWTS, then the extra 2K allo-
cated for an RWTS can be used for the BAS-
IC. In this situation, the end of the program
should only be checked with very long con-
trollers, since 3K ought to be enough for any
softkey operation.

Second, observe the 1534 bytes for varia-
bles. This should be enough space for the
simple softkey procedure. It is impossible to
allocate more memory for variables and use
a relocated RWTS file. If you find that you
need more memory and the program does
not use RWTS.13 or some other moved
RWTS, then the LOMEM: 8448 statement
in line 60 may be ommitted. This will allo-
cate what isn’t used (by the BASIC program)
of the 2K area reserved for the relocated
RWTS as variable space.

Hardcore COMPUTIST no.9 13

Never omit the “HIMEM:’”’ statement!
This could cause variables to overflow into
the sector buffer, thus making a faulty copy.

With all this new knowledge, we are finally
ready to scrutinize some sample controller
programs. Keep in mind that protection
schemes can be used with one another.
Therefore, a more sophisticated controller
for Super 10B will probably be required for
most softkeys. Even so, developing new con-
trollers isn’t difficult.

Standard Controller

0000 REM STANDARD CONTROLLER

1010 TK = 0:ST = 0:LT = 35:CD = WR

1020 T1 = TK: GOSUB 490

1030 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1030

1040 IF BF THEN 1060

1050 ST = 0:TK = TK + 1: IF TK <
LT THEN 1030

1060 GOSUB 490:TK = T1:8T =0

1070 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1070

1080 ST = 0:TK = TK + 1: IF BF =
O AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT : PRINT ''DONE
WITH COPY': END

Here is how the standard controller works:

Unique Variables

The following variables are used by the
controller exclusively. Other variables used
by the controller are for interaction with var-
ious subroutines in Super IOB.

LT - this variable holds the last track to be
accessed (it is the last track plus one). For
example, if line 1010 were to havean LT =15
(instead of LT = 35) then it would only copy
tracks 0-14.

T1 - holds the track number (TK) for the
transition of read to write and vice versa.

Line Explanation

1000 - identifies controller.
1810 - initializes variables.

TK =0 - sets the starting track to zero.

ST =0 - sets the starting sector to zero.

LT =35 - sets the last track to 34.

CD = WR - sets command code to write.
1020 - The read routine. It begins by saving
the current track number and then gets the
source disk.

1030 - prints the current track and sector
number, reads in the sector and increments
the sector number. If it is less than DOS (in
this case 16), then it reads another sector.
1048 - if the sector buffer is full, it goes to
the write routine.

1050 - resets the sector number to zero and
increments the track number. If it is not past
the last track, it reads the new track.
1068 - this is the beginning of the write rou-
tine. It gets the write drive and starts at the
previously saved track (T1), sector zero.
1078 - prints the current track and sector

14 Hardcore COMPUTIST no.9

number, writes the sector to the disk and
increments the sector number. If it is not
finished with this track, it writes another
sector.

1080 - resets the sector number and incre-
ments the track number. If the sector buffer
isn’t empty and it’s not past the last track,
it writes another track.

1099 - if it is not done duplicating the disk
(i.e, not past last track), it reads some more
tracks.

1100 - tells user that everything is OK and
that the disk is copied.

Even though this controller only copies
normal DOS 3.3 disks, I recommend saving
it anyway. This controller is the basic (pun
intended) building block for more complex
controllers.

Load the original Super IOB program
LOAD SUPER 10B

Type in the controller listed above.Save this
new program

SAVE IOB.STANDARD.CON

You now have the capability (I'm sure you
did before) to copy a regular diskette. Be-
cause you probably don’t think this is so ex-
citing, we’ll move on to the de-protection of
Castle Wolfenstein. I chose this game be-
cause its controller is a simple example of
what a few modifications to the standard
controller can accomplish.

Swap Controller

1000 REM SWAP RWTS CONTROLLER
1010 TK = 3:8T = 0:LT = 35:CD = W

R
1020 T1 = TK: GOSUB 490: GOSUB 36

0
1030 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1030
1040 IF BF THEN 1060
1050 ST = 0:TK = TK + 11 IF TK <
LT THEN 1030
1060 GOSUB 490:TK = T1:ST = O: GOSUB
360
1070 GOSUB 430: GOSUB 100:ST = S
T+ 1: IF ST < DOS THEN 1070
1080 ST = 0:TK = TK + 1: IF BF =
0 AND TK < LT THEN 1070
1090 IF TK < LT THEN 1020
1100 HOME : PRINT "EVERYTHING O.
K. DOS NOT COPIED": END
10010 PRINT CHRS (4)"'BLOADRWTS,
A$1900"

This controller is the controller that swaps
RWTSs before reading and writing. It can
be used for a great many things. By modify-
ing this one slightly we can copy Castle Wol-
fenstein.

Castle Wolfenstein Controller

1000 REM CASTLE WOLFENSTEIN CONT
ROLLER
1010 TK = 3:8T = 0:LT = 35:MB = 1

30:CD = WR:DOS = 13

1020 T1 = TK: GOSUB 490: GOSUB 36
0: ONERR GOTO 550

1030 GOSUB 430: GOSUB 100:ST = S
T+ 2: IF ST < DOS * 2 THEN
1030

1040 IF BF THEN 1060

1050 ST = 0:TK = TK + 1: IF TK <
LT THEN 1030

1060 GOSUB 490:TK = T1:ST = 0: GOSUB
360

1070 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1070

1080 ST = 0:TK = TK + 1: IF BF =
0 AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT "EVERYTHING O.
K. DOS NOT COPIED'': END

10010 IF PEEK (6400) < > 162 THEN

PRINT CHR$ (4)"BLOAD RWTS.

13,A$1900"

Castle Wolfenstein uses ‘‘Strangely Num-
bered Sectors’® as its protection scheme.
Luckily, they aren’t so strange that a com-
plex algorithm is needed to calculate the next
number. Instead, they are merely even-
numbered DOS 3.2 sectors (0-24).

When 13-sector DOS gets these sector
numbers, it doesn’t accept them and returns
with I/O error. But the 13-sector RWTS
doesn’t care about the actual number on the
sector, as long as it matches up with the sec-
tor number you want to access. Thus, all one
has to do is read with the strange sector num-
bers and write with the normal ones.

Here is a line-by-line explanation of the
differences that make this controller suc-
cessful:

1800 - identifies controller.

2010 - start at track three (bypass DOS
tracks) and set MB and DOS to their
13-sector values.

1028 - since we want to use RWTS.13 to read
with, swap it in.

1030 - counts from 0 to 24 by two’s.
1060 - swaps the normal RWTS back into
its original location for the write ahead.
1108 - tells the user that the copy has no DOS
on it.

18010 - BLOADs the 13-sector RWTS at
$1900.

As noted in line 18018, once the copy has
been made there will be no DOS on the de-
protected version. This isn’t a problem as
long as you don’t boot with it.

Super 10B BASIC program

10 REM #addsdhsdiddhsehshihiikhdik

20 REM ** SUPER IOB *k

30 REM ** BY RAY DARRAH ek

40 REM #kadddhuhidihihiiiihnhii

50 REM SET HIMEM BELOW BUFFER AND
SET LOMEM ABOVE THE BLOADED RWTS

Continued on page 22

ProDOS To DOS:

Single Drive Conversion Technique

Requirements:

64K Apple 11+, IIe, etc.
One disk drive

DOS 3.3 slave disk

with null HELLO program
PRODOS Disk

Editor’s Note: One of the frustrations I en-
countered when first experimenting with Ap-
ple ProDOS was the inability of the
DOS-ProDOS Conversion Program (DUCK)
to transfer files between the two operating
systems with only one disk drive. The Pro-
DOS User’s Manual inexcusably neglects to
mention this limitation, and after several un-
successful attempts at file transfer I was
directing every expletive I could think of at
a certain Fortune 500 company with head-
quarters in Cupertino, CA. Fortunately for
single drive ProDOS users, Jimmy Eubanks
has come up with a straighiforward tech-
nigue that will transfer most Applesaoft and
Binary programs between the two operating
systems.

This technique will allow those ProDOS
users with only one disk drive to transfer Ap-
plesoft BASIC files and Binary files between
ProDOS and DOS 3.3 disks in either direc-
tion. This is accomplished by loading the
program from the source disk, then hiding
it in an area of memory that is not disturbed
by the boot process. Once the destination
operating system has been booted, the pro-
gram can be restored to its proper memory
location and saved.

For the boot of a DOS 3.3 slave disk, all
memory between $990 and $95FF is left un-
touched so files up to 193 sectors (86 blocks)
in length can be transferred from ProDOS
to DOS. ProDOS, however, does not tiptoe
through memory quite so lightly during its
boot. The only large portion of memory that
is left undisturbed by a ProDOS boot is
$5C00-$95FF. This limits the size of file that
can be converted from DOS to ProDOS to
those with 59 or fewer sectors (38 blocks).

To Transfer Applesoft BASIC
Files From DOS To ProDOS:

1) Boot up DOS 3.3.

PR#n (n being the slot your disk interface
is in)

By Jimmy Eubanks Jr.

2) Load the program you want to convert.
LOAD BASICPROG

3) Enter the monitor.
CALL -151

4) Find the highest memory location of the
program now in memory by checking the
values at $AF and $B@. These will be listed
with the high order byte last, so reverse the
order of the the two values you find.

AF.B#

Example: If the bytes displayed are AA 1B
then the end of the program is at $1BAA.

5) You now need to calculate the length of
the program and add it to $5C@8 to deter-
mine where the end of the relocated program
will be. To get the length, subtract $800 from
the hex value found in step 4. This is the Ap-
plesoft program’s length. Add this value to
$5C00.

Example: For a program whose end js at

SIBAA
$1BAA-$6808 =$13AA - program length
$5C00 +$13AA =$6FAA -end of
relocated program

6) Move the program to $5C00.
5CH0 <800 .(value found in step M

Example: For a program whose end is at

$1BAA

5CHP <38088.1BAAM

7) Boot a ProDOS Disk.

n“RP (n being the slot your disk in-
terface is in.)

8) Move the program back to its original lo-
cation using the end of relocated program
address found in step 5.
800 <5CH0.(address found in step
5M
Example: If the end of the relocated pro-
gram is at $6FAA

808 <5CHB.6FAAM

9) Restore the end of program pointers at
$AF-BO to the values you found there in step
4.

AF: Il hh

Example: For a program whose original
ending address is at $1BAA

AF:AA 1B
10) Hit the RESET key to re-enter Applesoft
11) Save your program.

SAVE BASICPROG

Hardcore COMPUTIST no.9 15

= Example:

’ | Example:

To Transfer Binary Files
From DOS 3.3 To ProDOS

& 1) Boot up a DOS 3.3 disk.

PR#n (n being the slot your disk interface
is in)

| 2) BLOAD the file you want to transfer.
BLOAD BINPROG

3) Enter the monitor.
CALL -151

4) To find the starting address of the pro-
| gram you just BLOADed, check the values
at $AAT2-AA73. They are stored in lo/high
format, so be sure to reverse the order of the
two bytes you find before recording them.

AAT2.AAT3

If the bytes displayed are @3 98,
the starting address is $0803.

5) The program’s length is stored at $AA60-
AAG61, again in a lo/high format.

AAGH.AAG1

: If the bytes displayed are 4E 12,
then the program’s length is $124E bytes.

6) The end of the program at its original and

¥ relocated addresses also needs to be calcu-
| lated. To do this add the length found in step

| 5 tothe load address to find the original end-
ing address. Likewise, add the length to
$5C00 to find the relocated ending address.

": Example: If the program’s original address

~ | is $0803 and its length is $124E

| $8863+$124E=$1A51 - end of original

& program

| $5CH0 + $124E =$6F4E - end of relocated
¢ program

7) Hide the program at $5C08.

5CH0 < starting address(step 4).ending ad
dress(step 6)M

. Example: For a program which starts at
| $0803 and ends at $1A51

5CH08 <863.1A51IM
.| B) Boot a ProDOS disk.

n“™®P (n being the slot your disk in-
terface is in)

9) Move the program back to its original lo-
cation using the relocated ending address cal-

. -_ culated in step 6.

starting address(step 3) <5C##0.relocated

16 Hardcore COMPUTIST no.9

ending address(step 6)M

Example: For a program whose relocated
ending address is at $6F4E

883 <5CH0.6F4EM
10) Hit the RESET key to re-enter Applesoft

11) BSAVE your program using the proper
address and length parameters you deter-
mined in steps 4 and 5

BSAVE BINPROG,ASnnnn, LS$I
Example:
BSAVE FIDO,A$883,L$124E

It is up to you to get your old DOS 3.3
programs to function properly under
ProDOS.

Converting programs from ProDOS to
DOS is slightly easier since a CATALOG will
display a program’s length and load address
(BIN type). Larger programs can also be con-
verted since the boot of a DOS 3.3 slave disk
with no HELLO program will leave memory
$0990-395FF undisturbed.

Converting Applesoft Programs
From ProDOS To DOS 3.3

1) Boot up ProDOS
PR#n (n being the slot your disk interface
is in)

2) Load the program you want to convert.

LOAD BASICPROG

3) CATALOG the disk and write down the
decimal file length that is displayed for the
program you wish to convert. Convert this
value to hexadecimal and add $08@1 to it.
Also add the hex file length to $4001 to come
up with the end of the relocated program.

Example: If the length displayed by
CATALOG is 4540.

4548 (decimal) = $116C(hexadecimal) - pro-
gram length
$0861+ $116C = $19BD - end of program
$4001+$116C =$516D - end of relocated
program
4) Enter the monitor.

CALL -151
5) Move the program to $4008.

4600 < 800 .(end of program value found
in step 3)M

Example:

R —

4000 <8606.19BDM

6) Boot a DOS 3.3 slave disk with a “‘null”’
HELLO program.

n“™®P (n being the slot your disk inter-
face is in.)

7) Move the program back to its original lo-
cation using the end of relocated program
address you found in step 5.

#8008 <8968 .(relocated end of program
value found in step 3)M

Example:
806 <4808.516DM

8) Restore the end of program pointers at
$AF-BO so they are correct. You found these
values in step 3. Do not forget the pointers
are in a lo/high format.

Example: If the original end of the program
was at $19BD type:

AF: BD 19
9) Hit the RESET key to re-enter Applesoft
10) Save your program.

SAVE name of program

Converting Binary Programs
From ProDOS To DOS 3.3

1) Boot up a ProDOS disk.

PR#n (n being the slot your disk interface
is in)

2) CATALOG the disk and write down the
load address and length that is displayed for
the program you wish to convert. Convert
the length to hexadecimal and add it to
$0900 to come up with end of the relocated
program.

Example: If the program length displayed

is 2048
20 48(decimal) = $6 808 (decimal)

$0800 +$6980 =$1108 - end of relocated
program

3) BLOAD the program at $@900
BLOAD PROGRAM,A$984

4) Enter the monitor.
CALL -151

5) Boot a DOS 3.3 slave disk with a null
HELLO program

Continued on page 18

READER QUESTIONNAIRE

Dear READER:

The editors at Hardcore COMPUTIST are in the process of planning a regular column highlighting Hardware
Projects which can be completed by readers who possess a basic understanding of electronics.

To help us provide you with the kinds of articles and columns that you want, please complete the following ques-
tions and return this form along with your name and address to:

Hardcore COMPUTIST, P.O. Box 44549, Tacoma, WA 98444

For those readers who feel a Hardware Column WOULD NOT BE OF INTEREST to them...Please respond! We
need your answers and comments (o assure an accurate sampling of reader opinion.

My age group is:
O 13 and under O 14-24

O 25-34 O 3544

0 44-65 0 65 and Over
Sex

O Male

O Female

High School graduate
Bachelor's degree .
Master's

Doctorate

Other

I would be interested in reading a Hardware Project column
in future issues of Hardcore COMPUTIST.

Definitely

Maybe
Probably Not

Projects | would be interested in would be in a cost range of:

Under $25

$25-75

$75-150

Steak and lobster for 10 or more

My strongest area of skill is:

aooonoo

oaono

ooono

O Programming [Both
O Electronics O Neither

Hardcore COMPUTIST publishes articles that are useful to
me.

O Always
O Sometimes
O Not usuvally

Programming and softkey techniques are carefully explained
and provide all the information I need to complete a project.

O Always
O Sometimes
O Not usually

I would like to see the following kinds of articles in future
issues:(Check all boxes which apply)

Deprotecting business programs

Deprotecting applications & utilities programs
Deprotecting games

Reviews

Hardware and software modifications
Bit-copy parameters

APT’s

Adventure Tips

CORE

Other

goooooaooog

How many others, besides yourself, read your copy of Hard-

core COMPUTIST?

O one person

o 24

O 5 or more

After reading each issue, do you

O Give it to a friend

0 Add it to your reference library

O Use it to line the cat box

O Other .

Do you often purchase products advertised in Hardcore

COMPUTIST?

O Yes

O No

Approximately how many hours do you spend each week us-

ing your computer?

O wunder §

O s-10

O 10-20

O over 20 (before, during, and after dinner; before bed-
time, instead of bedtime)

Which Apple computers do you own or use?

(Check all boxes which apply)

O Apple][O Apple //e

O Apple][Plus [Apple //c

O Apple compatible

Which Operating System(s) do you use?

O 33 O ProDOS

O 32 O Apple Pascal :
How many disk drives do you own? !
O one O hard disk

O twwo 0 not enough

O RAM

Which of these accessories do you own?
(Check all boxes which apply)

O modem O language card
[J printer O modified ROM
O copycard O 80<olumn card
0 ROM card O Other

In the use of computers, I think of myseif as a

0 Novice (Which button do [push?)

O Definite Intermediate (Sure. | can mess things up with
real self-confidence)

0 Full-time Hacker (Shave my beard? What beard?)

Comments

City St Zip

Hardcore COMPUTIST no.9

Continued from page 16

n“™LP (n being the slot your disk inter-
face is in)

6) Move the program back to its original lo-
cation using the relocated ending address cal-
culated in step 2.

starting address < #988.relocated ending
address(step 2)M

Example: If the CATALOG display
showed a load address of $2800 and a length
of 30808 type:

2000 <8908.1106M
7) Hit the RESET key to re-enter Applesoft.

8) BSAVE your program with the address
and length parameters which the ProDOS
CATALOG displayed

BSAVE PROGRAM, ASnnnn, LSl

g

Using ProDOS
On A
Franklin Ace

The March, 1984 issue of Apple Assem-
bly Lines contained a short article contain-
ing instructions on how to successfully boot
ProDOS on a Franklin Ace computer. This
method involved NOPping two bytes in the
ProDOS system file after it had been load-
ed into memory. However, this method
would not work for the ProDOS file dated
1-JAN-84.

The ProDOS system file contains a
checksum-like subroutine which returns a
value of $8C if a genuine Apple is detected
and a 380 otherwise. If a non-Apple is de-
tected ProDOS will just hang up and not
load in the BASIC.SYSTEM interpreter. A
disassembly of this routine from the
1-JAN-84 ProDOS file looks like:

2639-18 cLcC

263A- AC 3126 LDY $2631
263D-B1 DA LDA (sSOA),Y
263F- 29 DF AND @SDF

2641- 6D 3126 ADC $2631
2644-8D 3126 STA $2631
2647-2E 3126 ROL $2631

264A-C8 INY
264B-CC 34 26 CPY $2634
264E- DO ED BNE $263D
2650- 98 TYA
2651~ 0A ASL

18 Hardcore COMPUTIST no.9

2652-0A ASL

2653~ 0A ASL

2654~ 0A ASL

2655- AB TAY

2656- 4D 3126 EOR $2631
2659- 69 0B ADC es0B
2658- D0 03 BNE $2660
265D~ A5 OC LDA os0C
265F- 60 RTS

2660- A9 00 LDA 9300
2662- 60 RTS

In order for this routine to always return
with a value of $0C, the branch to the code
which loads the accumulator with 366 (LDA
#300) needs to be removed. This can be done
by replacing the BNE $2668 (D@ 03) instruc-
tion with two NOP’s (EA EA).

The easiest way to do this is to use a sec-
tor editor and zap the change directly to the
disk. Any sector editor can be used on a Pro-
DOS disk because the formatting has not
been changed from DOS 3.3. On my copy
of the ProDOS USERS DISK the change I
had to make was to bytes $5B and $5C of
track $01, sector $89. I changed them from
D@ @3 to EA EA and rewrote the sector.

If you have a sector editor with search
capability, such as ZAP, you should search
for a byte sequence of 69 @B D@ @3, since
the sequence of D@ 83 is a fairly common
one.

Once you have made this change, ProDOS
should boot and operate on Franklin’s and
other Apple compatibles that have their mo-
nitor ROM routines in the proper locations.

¢

Bugs in
Hardcore COMPUTIST no.8

In our last issue there was an error in
step 12 of the article ‘‘Breaking Win-
dows:Softkey for Legacy of Llylgamyn"’
on page 18. The last byte listed in that
step should be ED not FD. Step 12 should
therefore read:

12) Start editing at byte $15, entering the
following bytes

D#® 16 EA AD 2D 06 CE FB 00 D@ F8
ADDE 98 A901 48 A501 48 A5 00 48
60 A9 00 F@ ED

Another detail which might cause
problems for some readers is in the box
on page 15 which contains instructions for
creating DeMuffin Plus. In step 6 there
should be an asterisk (*) following the
CTRLY . Step 6 should read:

6) Tell the monitor what is being moved
and where it is going

#1988 <B880.BFFF “™.Y*

Most Wanted List

Reader response to our ‘‘Most Want-
ed List'"" has been very favorable. We
have received softkeys for a number of
programs previously in our list and lots
of votes for programs to add to the list.
We will be publishing the softkeys we
have received just as soon as they have
been evaluated and edited by our staff.

So, keep those votes and softkeys
coming.

If there is a program that you have
been pulling your hair out trying to back-
up, let us know about it.

Hardcore COMPUTIST
Wanted List
P.0. Box 44549
Tacoma, WA 98444

If you know how to de-protect, unlock
or modify any of these programs, we en-
courage you to help other Hardcore
COMPUTIST readers and earn some ex-
tra money at the same time. Be sure to
send the information to us in article form
on a DOS 3.3 diskette.

1. Apple Business Graphics
Apple Computer
2. Flight Simulator II
Sub Logic
3. Type Attack
Sirius Software
4. DB Master 4.0
Stoneware, Inc.
5. Time Is Money
Turning Point
6. Julius Erving and Larry Bird
Go One on One
Electronic Arts
7. Visiblend
Micro Lab
8. Cut And Paste
Electronic Arts
9. Dollars And Sense
Monogram
10. Word Juggler
Quark, Inc.
11. Catalyst
Quark, Inc.
12. Rocky’s Boots
The Learning Company
13. PFS Graph
Software Publishing Corp.
14. HAMSOFT
Kaltronics
15. The Statistics Series
Human Systems Dynamics
16. Millionaire
Blue Chip Software
17. Facemaker
Spinnaker
18. Story Machine
Spinnaker

CORE
Word Search
Generator

By Barry Palinsky

Requirements:

An Apple][plus or compatible
48K RAM

At least one disk drive

Printer

When for some reason my computer
becomes unusable (my wife is increasing the
size of her phone list or my children spill
Pepsi on the motherboard while shooting
alien foes) I often find myself looking for en-
tertainment. One thing I have discovered that
can provide hours of fun is curling up in
front of the television set with a good word
search puzzle.

After solving many of these mindbending
puzzles, I began thinking how enjoyable it
might be to create some word searches of my
own. So for a while I was spending my free
time scribbling word searches. The best part
of making my own searches was that I could
pick words that interested (or excited)
people.

Although it was enough to make searches
using graph paper, | wanted an easier faster
way to make them. This is why I made The
CORE Word Searcher. If the idea of mak-
ing word searches for your family or friends
sounds fun, I strongly recommend this
program.

Typing it In
The first step to creating your own word
searches is to key in the program beginning
on this page and SAVE it with:

SAVE WORD SEARCHER

Next, type in the hexdump following and
save this one by typing:

BSAVE WORD SEARCHER.OBJ,
A3360,LSAE

How To Use It

When you RUN the program, the first
thing you will be asked is which slot your
printer is in. Most printers are in slot 1 and
this is probably what you should type. If you
do not wish to use your printer, you may type
a zero (@) indicating the screen as your
printer. As with most of the prompts in this
program, if you answer them illegally, the
program will merely ask you the same ques-
tion until you give it an acceptable answer.

The next question concerns how many
characters per line your printer has. In stan-
dard mode (usually 10cpi) this is either 80

or 85. If you wish the program to set up the
printer in a non-default mode, you will have
to append some printer codes to line 680. If
you do this, be sure save this new version of
The CORE Word Searcher (preferably un-
der another name).

Next, you will be prompted with DISK
ACCESS? (Y/N). If you press Y, you will
find yourself in the disk access subroutine
which is explained later.

Any other key will be considered a nega-
tive response and therefore will place you at
the next input which is “COLUMNS IN
WORDSEARCH.” This is the number of
horizontal characters in the wordsearch.
Valid numbers are between 5 and 38 in-
clusive.

After that you will be asked the number
of rows in the wordsearch. This is the num-
ber of characters placed vertically in the
search. Valid numbers for this are between
5 and 23 inclusive.

The last phase before actually editing the
word search is to enter the words to be
searched for. The maximum number of
words allowed is 75. As each word is typed
in, it is placed in two arrays. One array is
arranged by length of the word and the other
is arranged alphabetically. Because of this,
word entry may slow down as you approach
the 75 word limit. If you type a word with
a space in it (ex. NEW JERSEY) the space
will not appear in the word search but it will
appear in the word list.

Editing a WordSearch
While editing a word search, the word
you’re currently dealing with is highlighted
by INVERSE text. There are a variety of
commands available that affect this word.
They are:

IJ KM - These move the word in the usual
ESCape directions.

< - > -Theleft and right arrow keys rotate
the word counter clockwise and clockwise
respectively.

N L - These keys place the word in the search
where it is and begins editing the (N) next
or (L) last word. Note: Words are edited ac-
cording to length, longest word first, short-
est word last.

G - The “‘G”’ key grabs a word (for editing)
specified by you.

By pressing the “P’’ key, you enter the
printout subroutine. The first prompt of this
routine is ‘““ANSWER SHEET OR WORD
SEARCH?”. Pressing ‘‘A’ will cause a prin-
tout of the answer sheet. Pressing “W"" will
cause a printout of the actual word search
(with random letters placed where no words
are hidden). The next prompt is ““SINGLE
SPACED OR DOUBLE SPACED?”. If you
choose single spaced, the wordsearch rows
will be printed one after another. On the
other hand, if you choose double spaced, a
blank line will be inserted between each row,

Next, the printout routine asks you the ti-
tle. This is followed by the prompt “READY

Hardcore COMPUTIST no.9 19 .

THE PRINTER."” You must now adjust the

printer and then press a key to get the | .

printout.

The ““A’’ key is meant for adding words
to the word list. _

Pressing ““E’’ will invoke the edit words §
routine. When prompted for a word, you |
should type in the word you wish to change
or delete. If you hit RETURN without typ-
ing a word, the alphabetical list of words will
be displayed with duplicates highlighted. You
may pause the list by pressing ™8 and you
may terminate the listing by pressing
RETURN.

The “ESC” key is used primarily to exit ==

the program. It also allows two other op-
tions. You may go back to the wordsearch |
which will act just like you didn’t press ESC
or you may start the program over losing any
unsaved work.

Pressing ‘D’ or answering “Y”’ to the
third prompt will invoke the disk access
subroutine. This routine will let you do just
about any DOS command with slot, drive |
and volume parameters. In addition, the §
LOAD and SAVE commands are intercept- £
ed before they get to DOS. Instead of
LOADing and SAVEing BASIC programs
they now load and save a word search (with
any filename you wish).

10 REM /N\/NININININININININININ

20 REM \

30 REM / CORE PRESENTS

40 REM \

50 REM /

60 REM \ WORD SEARCHER

70 REM /

80 REM \

90 REM

100 GOSUB 1540: GOSUB 1030: GOTO 300

110 REM POKE IN COORDINATES

120 POKE 252,WX(Z,W0): POKE 253,
WX(01,W0) : RETURN

130 REM ERASE CURRENT WORD

140 GOSUB 120: POKE Z,64: CALL ML:
RETURN

150 REM POKE IN STATS OF CURRENT
WORD

160 FOR A = 01 TO LEN (W$(Z,W0)):
POKE 735 + A, ASC (
MID$(W$(Z,W0) + CHRS (Z),A))

170 NEXT : POKE 249, LEN (W$(Z,W0)):
POKE 01,WX(TW,W0): RETURN

180 REM MOVE IN A DIRECTION

190 GOSUB 140:XS = Z:YS = Z: ON A
GOTO 200,210,220,230

/
\
/
\
/
\
/

ININININININININININN

200 YS = - 01: GOTO 240

210 Xs = - 01: GOTO 240

220 XS = 01: GOTO 240

230 YS = 01

240 WX(Z,W0) = WX(Z,W0) + XS: IF
WX(Z,W0) > = GX THEN WX(Z,WO0) =
LX

250 IF WX(Z,W0) < LX THEN WX(Z,W0) =
GX - 01

260 WX(01,W0) = WX(01,W0) + YS: IF
WX(01,W0) > = GY THEN WX(01,W0)

= LY
270 IF WX(01,W0) < LY THEN WX(01,W0)
= GY - 01

280 GOTO 320

290 REM MANIPULATE WORD SEARCH

300 GOSUB 1690: HOME :XS =
WX(Z,01):WX(Z,01) = Z: GOSUB
420:WX(Z,01) = XS:W0 = 01

310 GOSUB 160: IF WX(Z,W0) = Z THEN
WZ(Z,W0) = 19:W%(01,W0) = 11

320 GOSuB 1220

330 WAIT - 16384,128: GET A$

340 FOR A = 01 TO LEN (K$): IF A$ <>
MID$ (K$,A,01) THEN NEXT : GOTO
330

350 ON A GOTO
190,190,190,190,530,550,1350, 4
70,450,840,800,390,370,1710

360 REM ROTATE WORD

370 GOSuB 140:WX(TW,WO) = WX(TW,WO)
+ 01: IF WX(TW,WO0) > 7 THEN
WX(TW,W0) = Z

380 GOTO 400

390 GOSUB 140:WX(TW,W0) = WX(TW,WO0)
= 01: IF WX(TW,W0) < Z THEN
WX(TW,W0) = 7

400 POKE 01,WX(TW,W0) : GOTO 320

410 REM PRINT WORD SEARCH

420 CALL 903: FOR A = 01 TO NW: IF

WX(Z,A) = Z THEN NEXT : RETURN

430 WO = A: GOSUB 160: POKE Z,96:

GOSUB 120: CALL ML:A = WO: NEXT

: RETURN

440 REM TRY FOR NEXT WORD

| 450 XS = 01: GOTO 480

. 460 REM TRY LAST WORD

470 XS = - 0

480 GOSUB 1250:W0 = WO + XS: IF WO >

: NW THEN WO = 01

| 490 IF WO < 01 THEN WO = NW

500 GOSUB 160: IF WX(Z,W0) = Z THEN

WX(Z,W0) = 19:W%(01,W0) = 11:

GOTO 320

510 XS = WX(Z,W0):YS = WO:WX(Z,W0) =

Z: GOSUB 420:W0 = YS:WX(Z,W0) =

XS: GOSUB 160: GOTO 320

520 REM ADD WORDS

530 GOsSuB 1030: GOTO 300

540 REM PRINTER PRINTOUT

550 GOSUB 1250: GOSUB 1300

560 HOME : PRINT TAB(15)"PRINT

OUT": VTAB &

570 INVERSE : PRINT '"A''=: NORMAL :

PRINT '"NSWER SHEET OR e

580 INVERSE : PRINT "W'";: NORMAL :

PRINT "ORD SEARCH?'":XS = Z

590 VTAB 23: PRINT "TO LEAVE PRESS

";: INVERSE : PRINT S

NORMAL : PRINT "APE"

600 WAIT - 16384,128: GET A$: IF A%

. <> "W' AND A% < > "A" THEN 300

. 610 VTAB 4: CALL 64578: PRINT

""ANSWER SHEET'':YS = Z: IF A% =

"W'" THEN XS = 01: VTAB &4: PRINT

""WORD SEARCH "

620 VTAB 7: INVERSE : PRINT HSt=e
' NORMAL : PRINT "INGLE SPACED OR

630 INVERSE : PRINT '"D'';: NORMAL :
PRINT "OUBLE SPACED?"
| 640 WAIT - 16384,128: GET A$: IF AS
: < > "§" AND A$ < > "D" THEN 560
|| 650 VTAB 7: CALL 64578: PRINT
""SINGLE SPACED'": IF A$ = '"p"
THEN YS = 01: VTAB 7: PRINT
| ""DOUBLE SPACED"
| 660 VTAB 12: CALL 64578: PRINT:
INPUT "TITLE=>'"";:T$: HOME
670 PRINT "READY THE PRINTER": GET
A$:WO = 01: IF X * TW < = PX THEN
W=TW
680 PR# PR: REM PRINTER SETUP

20 Hardcore COMPUTIST no.9

690 IF T$ < > """ THEN PRINT SPC((PX
= LEN (T$)) / TW)T$: PRINT M$;

700 FOR A = 01 TO Y: IF YS THEN PRINT
M$;

710 PRINT SPCC (PX - X * WO) / TW) ;=
FOR B = 01 TO X: IF XS = Z THEN
730

720 IF MID$ (WS$(A),B,01) = "." THEN
PRINT CHR$ (RND (01) = 26 +
65);: GOTO 740

730 PRINT MID$ (WS$(A),B,01);

740 IF WO = TW THEN PRINT " LD

750 NEXT : PRINT M$;: NEXT : PRINT
M$;

760 FOR A = 01 TO NW STEP TW: PRINT
SPCC PX / 4)A") "W$(01,A)'" "

770 IF NW > (A) THEN PRINT SPC(PX *
5/ 8 - LEN (W$(01,A))- LEN (
STR$ (A)) — TW - PX / 4)A + 01™)
"W$(01,A + 01)

780 NEXT : PRINT M$: PRH# Z: GOTO 560

790 REM GRAB WORD

800 GOSUB 1250: POKE 34,23: VTAB 24:
INPUT "'"GRAB WORD=>'"';W$: HOME :
POKE 34,2

810 FOR A = 01 TO NW: IF W$(Z,A)< >
W$ THEN NEXT : PRINT G$;: GOSUB
140: GOTO 320

820 WO = A: GOTO 500

830 REM EDIT WORDS

840 GOSUB 1250: HOME : PRINT SPC(
4)"EDIT WORDS (TYPE 'X' TO
RETURN)'': POKE 34,01

850 PRINT : INPUT "WORD =>"':W$:
PRINT : IF W$ = "X" THEN TEXT :
GOTO 300

860 IF NW = Z THEN TEXT : GOSUB
1030: GOTO 300

870 IF VAL (W$) < > Z THEN W$ =
W$(01, VAL (W$))

880 IF W$ = """ THEN 990

890 FOR A = 01 TO NW: IF W$(Z,A)< >
WS THEN NEXT : PRINT '""?WORD NOT
FOUND"G$: GOTO 850

900 XS = A: FOR A = 01 TO NW: IF
W$(01,A) <> W$ THEN NEXT

910 YS = A: FORA =YS + 01 TO
NW:W$(01,A - 01) = WE(01,A):
NEXT :W$(01,Nw) = v

920 FOR A = XS + 01 TO NW:W$(Z,A-
01) = WS(Z,A):WX(Z,A - 01) =
WX(Z,A) :WX(01,A = 01) = WX(01,A)

930 WX(TW,A = 01) = WX(TW,A): NEXT
SWE(Z,NW) = " WX(TW,NW) =
TW:WX(Z,NW) = Z:WX(01,NW) = Z

940 INVERSE : PRINT "C";: NORMAL :
PRINT "HANGE OR '"';: INVERSE :
PRINT ''D'';: NORMAL : PRINT
"ELETE"

950 WAIT - 16384,128: GET A$: IF AS
< > "C' AND A% < > '"D'" THEN 950

960 VTAB (PEEK (37)): CALL 64578:
IF A$ = ""D'" THEN NW = NW - 01:
PRINT "DELETED': GOTO 850

970 INPUT ''NEW WORD=>'";W$: IF LEN
(W$) > X OR LEN (W$) > Y OR LEN
(W$) > 20 THEN 970

980 GOSUB 1140: GOTO 850

990 FOR A = 01 TO NW: IF W$(01,A) =
W$(01,A - 01) THEN FLASH

1000 PRINT A") "W$(01,A): NORMAL :
IF PEEK (- 16384) < > 141 THEN
NEXT

1010 POKE - 16368,2Z: GOTO 850

1020 REM INPUT WORDS

1030 HOME : PRINT SPC(5)"WORD ENTRY
(TYPE 'X' TO EXIT)": VTAB &

1040 IF NW THEN PRINT "ERASE WORDS

IN MEMORY (Y/N) Y' CHRS (8);:
GET W$: IF W$ <> "N'" THEN GOSUB
1660:NW = Z

1050 VTAB TW: CALL 64578: VTAB 4:
POKE 34,TW

1060 PRINT : INPUT "WORD =>';W$

1070 IF LEN (W$) > X OR LEN (W$) > Y
OR LEN (W$) > 20 THEN PRINT
G$''"TOO LONG'": GOTO 1060

1080 IF W$ = "X" THEN 1120

1090 IF W$ = '"'" THEN 1060

1100 NW = NW + 01:XS = Z: GOSUB 1140

1110 IF NW < 75 THEN 1060

1120 TEXT : RETURN

1130 REM FIND A PLACE FOR THE WORD

1140 FOR A = 01 TO NW: IF W$ >
W$(01,A) THEN NEXT :W$(O1,NW) =
W$: GOTO 1160

1150 FOR B = NW TO A STEP -
01:W$(01,8) = W$(01,B - 01):
NEXT :W$(01,A) = W$

1160 A$ = ""': FOR A = 01 TO LEN (W$):
IF MID$ (W$,A,01) <> " 1" THEN
A$ = A$ + MIDS (WS$,A,01)

1170 NEXT : FOR A = 01 TO NW: IF LEN
(A$) < LEN (W$(Z,A)) THEN NEXT
:A = NW: GOTO 1200

1180 FOR B = NW TO A STEP -
01:W$(2,B) = W$(Z,B -

01) :WX(TW,B) = WX(TW,B - 01)

1190 WX(Z,B) = WX(Z,B - 01) :W¥%(01,B)
= WX(01,B - 01): NEXT

1200 W$(Z,A) = A$:Wi(Z,A) =
Z:WK(01,A) = Z:WX(TW,A) = TW:
RETURN

1210 REM HIGHLIGHT THE CURRENT WORD

1220 GOSUB 120: POKE Z,Z: CALL ML:
GOSUB 120

1230 POKE Z,96: INVERSE : CALL ML:
NORMAL : RETURN

1240 REM DROP WORD

1250 IF PEEK (Z) = 255 THEN 1270

1260 POKE Z,128: CALL ML: IF PEEK
(Z) = 255 THEN 1280

1270 PRINT G$;: POP : GOTO 330

1280 POKE Z,96: GOSUB 120: CALL ML:
RETURN

1290 REM CONVERT SCREEN IMAGE

1300 VTAB 24: HTAB O1: PRINT "ONE
MOMENT PLEASE";

1310 POKE 01,TW: POKE 249,X: FOR A =
01 TO Y: POKE 252,LX

1320 POKE 253,LY + A — 01: POKE s i
CALL ML:WS$(A) = "mn

1330 FOR B = 01 TO X:WS$(A) = WSS$(A)
+ CHR$ (PEEK (703 + B)): NEXT :
NEXT : RETURN

1340 REM DISK ACCESS

1350 HOME : PRINT SPC(5)"DISK
ACCESS (TYPE 'X' TO EXIT)": POKE
34,01: VTAB 3

1360 PRINT : INPUT ""COMMAND=>'""; AS:
IF PEEK (512 + LEN (A$)) THEN
VTAB PEEK (37): CALL 64578

1370 W$ = ""': FOR A = 512 + LEN (AS$)
TO 767: IF PEEK (A) THEN W$ = W$
+ CHR$ (PEEK (A)): NEXT

1380 T$ = CHR$ (4): ONERR GOTO 1520

1390 IF LEFT$ (AS$,4) < > "SAVE'" THEN
1440

1400 A$ = RIGHTS (AS, LEN (A$) - 4):
PRINT T$'"OPEN''ASW$: PRINT
T$""DELETE'"'AS

1410 PRINT T$''OPEN"'A$: PRINT
T$"WRITE''AS: PRINT NW", X', "y

1420 FOR A = 01 TO NW: FOR B = Z TO
TW: PRINT CHR$ (63 + WX(B,A));

1430 NEXT : PRINT

"LoUWS(Z,A)", WS (0T ,A) s NEXT :
GOTO 1480

1440 IF LEFTS (AS$,4) <> "LOAD" THEN
1490

1450 GOSUB 1670:A$ = RIGHTS (A$, LEN
(A$) - 4): PRINT T$"VERIFY"ASWS:
PRINT T$'OPEN"AS

1460 PRINT T$''READ''AS: INPUT NW,X,Y:
FOR A = 01 TO NW: INPUT
AS,WS(Z,R) ,WS(01,A)

1470 FOR B = Z TO TW:WX(B,A) = ASC (
MID$ (A$,B + 01)) - 63: NEXT :
NEXT : GOSUB 1680

1480 PRINT T$''CLOSE': GOTO 1360

1490 IF LEFT$ (A$,01) = "B'" THEN
POKE 222,11: GOTO 1520

1500 IF A$ = "X'" THEN POKE 216,Z:
TEXT : GOTO 300

1510 PRINT T$SASWS: GOTO 1360

1520 CALL 932: PRINT : PRINT "ERROR
#" PEEK (222)G$: GOTO 1360

1530 REM INITIALIZE VARIABLES

1540 A=01=X=Y=2=TW=LX=

W=B=PR=PX=

LY = GX = GY = N
WO = ML = XS = Y§
1550 A$ = '""':K$ = "IJKMAPDLNEG" +

CHR$ (8) + CHR$ (21) + CHRS
(27):G$ = CHRS (7):M$ = CHRS
3

1560 DIM W$(1,75) ,WS$(24) ,WX(2,75)

1570 01 = 1:Z = 0:TW = 2:W0 = 01:ML =
768

1580 IF PEEK (768) < > & THEN PRINT
CHRS$ (4)'BLOAD WORD
SEARCHER.OBJ ,A$300"

1590 WS$(2Z) = ".": FOR A = 01 TO
5:WS$(Z) = WS$(Z) + WSS(Z): NEXT

1600 TEXT : HOME : NORMAL : PRINT
SPC(5)''"CORE WORD SEARCH
EDITOR/CREATOR": VTAB &

1610 PRINT : INPUT "PRINTER SLOT
=>":PR: IF PR > 7 OR PR < Z THEN
1610

1620 PR = INT (PR): PRINT : INPUT
"CHARACTERS PER LINE =>";PX: IF
PX < 40 OR PX > 255 THEN 1620

1630 PRINT : PRINT "'DISK ACCESS?
(Y/N) N'" CHR$ (8);: GET A$: VTAB
PEEK (37): CALL 64578: IF AS =
"y THEN POP : GOTO 1350

1640 PRINT : INPUT ''COLUMNS IN
SEARCHWORD =>'"";X: IF X > 38 OR X
< 5 THEN 1640

1650 PRINT : INPUT "ROWS IN
SEARCHWORD =>";Y: IF Y > 23 OR Y
< 5 THEN 1650

1660 X = INT (X):Y = INT (Y): FOR A =
01 TO Y:WS$(A) = LEFT$
(WS$(Z) ,X): NEXT

1670 FOR A = 01 TO NW:W$(01,A) =

MWS(Z,A) = "IWR(Z,A) =
Z:WXC01,A) = Z:WA(TW,A) = TW:
NEXT

1680 LX = 20 = INT (X / TW):6X = LX +
X:LY = 11 = INT (Y / TW):GY = LY
+ Y

1690 POKE 254,LX: POKE 255,LY: POKE
250,GX: POKE 251,GY: RETURN

1700 REM EXIT?

1710 VTAB 24: HTAB 01: INVERSE :
PRINT "E';: NORMAL : PRINT "XIT
s INVERSE : PRINT "C';: NORMAL

1720 PRINT "LEAR WORK AREA '‘;:
INVERSE : PRINT "'B'';: NORMAL :
PRINT ""ACK TO SEARCHWORD";

1730 WAIT - 16384,128: GET AS: IF AS
<> VE' AND AS < > "C" AND AS < >
"B" THEN 1730

1740 HTAB 01: VTAB 24: CALL 64578:
IF A$ = "'C'" THEN RUN

1750 IF A$ = "B" THEN 330

1760 REM HBAYR RRAADY YDAARR RYABH

1770 TEXT : HOME : END

Word Searcher

Example
PXSGGSNTSBIHI
OAIDWIJROJNDU
ANIRELBBIMNTHN
OSRETEMARAPEB
KOELSPCKELYH
¥FILEUAPPSRZ
KTPOCDHEKULJCT
I KORTXKPY S ANH
£ BN myaio BV BT E B
FY¥Y¥YTHNRJITAMRDE
TFIOMGSIRYAJd
NRBCPPFHNIXTOQSB

1y AP T 2) BIT COPIER
3} CONTROLLER 4) DISK
5) ENCRYPT 6) FORMAT
7] NIBBLE 8) PARAMETERS
9) SECTOR 10) SOFTEKEY
11) SUPER IOB 12) TRACK
Word Searcher
Hexdump
0300:0600A2 FFBOGBEBEL $2C33
D308:F9 9001 60A5 FD20C1 $S44LEE
0310:FBA4FC204E D3 A401 $8ASA
0318:18B9 440365 FD85FD $1037
0320:C5FBBO16CSFF9012 $EB833
0328:18C8C8B9 440365 FC SAELT
0330:85FCC5 FABOO4C5FE $2800
0338:BOCCEBE4LF9BO04AY SCTF9
0340:FF850060FFFF0O001 $8E34
0348:010100FFFF FF 2400 SE824
0350:300EB128297F7004 $0F64
0358:9D C002 609D ED0260 $DBBO
0360:7005BDC0025003BD $71E4
0368:E002098025329128 SCFC5
0370:608600EBE4LF9BOF8 $18D0
0378:BDCD02C92E FOF4DD $S9ECS
0380:E002FOEFB60060A5 $478D
0388:FA8521A5FF4820C1 $C2D3
0390:FBA9AEALFE20ADFC $C2C6
0398:686900C5FB90EEA9 $C58D
03A0:2885216068A868A6 $4407
03A8:DF 9A 48 98 48 60 $6D45

Source Code

1000

1010 * WORD SEARCHER

1020 * MACHINE LANGUAGE STUFF

1030 =

1040

1050 LX EQ SFE LEAST MOST X
COORDINATE AVAILABLE

1060 LY EQ $FF LEAST MOST Y
COORDINATE AVAILABLE

1070 GX EQ SFA GREATEST XCOO
RDINATE AVAILABLE

1080 GY EQ $FB GREATEST YC00
RDINATE AVAILABLE

1080 X EQ $FC STARTING AND
CGURRENT X COORDINATE

1100 Y EQ $FD STARTING AND
CURRENT Y COORDINATE

1110 DIR EQ 1 DIRECTION TO
LOAD/SAVE

1120 DUR EQ $F9 NUMBER OF TIM
ES TO MOVE

1130 FUNC EQ $0 FUNCTION TO P
ERFORM, B6=LOAD/SAVE, B5=PRIMARY/SECONDA

RY BUFFER, B7=VERIFY?

1140 INVFLG EQ 50 FLAG THAT TEL
LS WHETHER TEST IS INVERSE OR NOT

1150 BASCALC .EQ $FBC1 ROUTINE THAT
CALCULATES TEXT SCREEN ADDRESS

1160 BASL EQ $28 WHERE THE SCR
EEN ADDRESS IS STORED

1170 PRIMARY EQ $2C0 PRIMARY BUFFE
R

1180 SECONDARY EQ S2EQ SECONDARY BUF
FER

1190 CLEOL2 EQ $FCAD ROUTINE THAT
STORES A ROW OF PERIODS

1200

1210 .OR $300

1220 TF WORD SEARCHER.OBJ
1230

1240 ASL FUNC VERIFY?
1250 LDX HSFF BEG. OFFSET
1260 BCS VERIFY YES

1270

1280 NXT1 INX STARTING1
1290 CPX DUR DONE?

1300 BCC DO1 NOPE!

1310 RTS

1320

1330 DO1 LDA Y

1340 JSR BASCALC GET ADDR
1350 LDY X CH

1360 JSR MOVER LD/SV PR/SC
1370

1380 LOY DIR INC/DEC
1390 CLC =0l

1400 LDA SPEEDS)Y Y=Y+YS
1410 ADC Y

1420 STA Y

1430 CMP GY

1440 BCS RTS2 STILL IN?
1450 CMPLY

1460 BCG RTS2

1470 CLC =0

1480 INY XS OFFSET
1490 INY

1500 LDA SPEEDS)Y X=X+XS
1510 ADG X

1520 STA X

1530 CMP GX STILL IN?
1540 BCS RTS2

1550 CMP LX

1560 BCS NXTA

1570 RTS2 INX

1580 CPX DUR FINISHED
1590 BCS RTSH YES, IGNORE
1600 LDA HSFF

1610 STA FUNG TELL BASIC
1620 RTS1 RTS

1630

1640 SPEEDS HS FFFFO001010100FFFFFF
1650

1660 MOVER BIT FUNC LD OR SV?
1670 BMI LOADER LOAD!

1680

1690 LDA (BASL).Y SAVE SCRN
1700 AND #S7F ASCIl CNVRT
1710 BVS SECND.S

1720 STA PRIMARY X

1730 RTS

1740 SECND.S STA SECONDARY X

1750 RTS

1760

1770 LOADER BVS SECND.L

1780 LDA PRIMARY X

1790 BVC LOAD

1800 SECND.L LDA SECONDARY, X

1810 LOAD ORA #380 NORMALIZE
1820 AND INVFLG INVERSE?
1830 STA (BASL).Y

1840 ATS3 RTS

1850

1860 VERIFY STX FUNC RETURN CODE
1870 .1 INX NEXT1

1880 CPX DUR DONE?

1890 BCS RTS3 YES!

1900 LDA PRIMARY X GET ONE

Continued on page 30

Hardcore COMPUTIST no.9 21

Continued from page 14

60 LOMEM: 8448: HIMEM: 9983: GOTO
10010

70 REM INITIAL IOB SETUP

80 POKE BUF,39: POKE DRV,DV: POKE
VOL,VL: POKE SLT,SO * 16: RETURN

90 REM R/W SECTOR

100 BF = 0: POKE TRK,TK: POKE
SCT,ST: POKE CMD,CD: CALL IO:
POKE BUF, PEEK (BUF) + 1: IF
PEEK (BUF) = > MB THEN BF = 1

110 RETURN

120 REM MOVE S PHASES

130 POKE 49289 + SO * 16 + DV,0:
POKE 49289 + SO * 16,0: A = PH -
INT (PH / &) * &4: POKE 1144,128
+ A: POKE 811,128 + S + A: POKE
813,50 * 16: CALL 810: POKE
49288 + SO * 16,0: PH = PH + S:
IFPH <O THENPH =0

140 RETURN

150 REM 16 SECTOR RWTS ALTERATIONS

160 REM IGNORE CHKSUM & END MARKS

170 POKE 47405,24: POKE 47406,96:
POKE 47497 ,24: POKE 47498,96:
RETURN

180 REM ALTERED ADDRESS MARKS

190 READ A1,A2,A3: POKE 47445,A1:
POKE 47455,A2: POKE 47466,A3:
RETURN

200 REM ALTERED DATA MARKS

210 READ A1,A2,A3: POKE 47335,A1:
POKE 47345,A2: POKE 47356,A3:
RETURN

220 REM NORMALIZER

230 POKE 47405,208: POKE 47406,19:
POKE 47497,208: POKE 47498,183:
POKE 47445,213

240 POKE 47455,170: POKE 47466,150:
POKE 47335,213: POKE 47345,170:
POKE 47356,173: RETURN

250 REM 13 SECTOR RWTS ALTERATIONS

260 REM IGNORE CHKSUM & END MARKS

270 POKE 47530,24: POKE 47531,96:
POKE 47438,24: POKE 47439,96:
RETURN

280 REM ALTERED ADDRESS MARKS

290 READ A1,A2,A3: POKE 47478,A1
POKE 47488,A2: POKE 47499,A3
RETURN

300 REM ALTERED DATA MARKS

310 READ A1,A2,A3: POKE 47368,A1:
POKE 47378,A2: POKE 47389,A3:
RETURN

320 REM NORMALIZER

330 POKE 47530,208: POKE 47531,183:
POKE 47438,208: POKE 47439,19:
POKE 47478,213

340 POKE 47488,170: POKE 47499,181:
POKE 47368,213: POKE 47378,170:
POKE 47389,173: RETURN

350 REM SWAP RWTS AT $1900 WITH THE
ONE AT $8B800

360 POKE 253,25: POKE 255,184: POKE
224,8: CALL 832: RETURN

370 REM FORMAT DISK

380 AS$ = ""VOLUME NUMBER FOR
COPY=>254"": HOME: GOSUB 450:
HTAB32: INPUT "*';VL$: VL = VAL
(VL$): IF VLS = "' THEN VL = 254

390 IF VL > 255 OR VL < O THEN 380

400 POKE CMD,INIT: SO = S2: DV = D2:
A$ = "INSERT BLANK DISK IN SLOT
" + STR$ (S2) + ', DRIVE " + STRS
(D2): GOSUB 470

22 Hardcore COMPUTIST no.9

410 GOSUB 80: HOME: A$ =
""FORMATING': FLASH: GOSUB 450:
NORMAL: CALL IO0: VL = O: RETURN

420 REM PRINT TRACK & SECTOR#

430 VTAB 3: HTAB 10: PRINT
"TRACK=>"TK SPC(2)"SECTOR=>"ST
SPC(2): RETURN

440 REM CENTER MESSAGE

450 HTAB 21 - LEN (A$) / 2:
PRINTAS; : RETURN

460 REM PRINT MESSAGE AND WAIT

470 HOME: VTAB 11: GOSUB 450:
VTAB13: A$ = "PRESS ANY KEY TO
CONTINUE": GOSUB 450: WAIT
-16384,128: GET A$: RETURN

480 REM TOGGLE READ/WRITE

490 CD = (CD =1) +1: IF CD = RD
THEN A$ = "INSERT SOURCE DISK.'":
S0 = §1: DV = D1: GOTO 510

500 A$ = "INSERT TARGET DISK.": SO =
§2: DV = D2

510 IF D1 = D2 AND S1 = S2 THEN GOSUB
470: HOME

520 VTAB 1: HTAB 1: PRINT SPC(39);:
FLASH: A$ = "READING'': IF CD =
WR THEN A$ = "WRITING"

530 GOSUB 450: NORMAL: GOTO 80

540 REM ONERR IGNORE UNREADABLE
SECTORS

550 CALL B22:ERR = PEEK (222): IF
ERR > 15 AND ERR < 254 THEN POKE
216,0

560 IF (ERR = 255 OR ERR = 254) AND
CD < > RD THEN 10230

570 IF ERR > 15 THEN RESUME

580 PRINT CHR$ (7);: POKE BUF, PEEK
(BUF) + 1: IF PEEK (BUF) = > MB
THEN BF = 1

590 RETURN

10000 REM CONFIGURATION TIME

10010 REM BLOAD RWTS HERE

10020 IF PEEK (768) * PEEK (769) =
507 THEN 10060

10030 HOME: AS$ = ''* SUPER IOB *'":
GOSUB 450: PRINT: PRINT: A$ =
""CREATED BY RAY DARRAH'"': GOSUB
450

10040 VTAB 10: A$ = ""INSERT SUPER
IOB DISK': GOSUB 450: PRINT:
PRINT: PRINT: A$ = "PRESS ANY
KEY TO CONTINUE'": GOSUB450: WAIT
- 16384,128: GET AS

10050 PRINT: PRINT CHR$ (4)"'BLOAD
10B.0BJO,A$300"

10060 TK = ST = VL = CD = DV = SO:RD
= 1:WR = 2:INIT = 4: ONERR GOTO
10220

10070 10 = 768: SLT = 779: DRV =
780: VOL = 781: TRK = 782: SCT
=783: BUF = 787: CMD = 790: OVL
=792

10080 HOME: DOS = 16:MB = 151

10090 VTAB 8: PRINT: A$
"ORIGINAL": S2 = 6: D2 = 1:
GOSUB 10140: S1 = S2: D1 = D2

10100 PRINT: PRINT: PRINT: D2 =(D2 =
1) + 1: A$ = "DUPLICATE

'': GOSUB 10140

10110 A$ = ""FORMAT BACK UP FIRST? N"
+ CHRS (8): HOME: VTAB12: GOSUB

450: gET AS: IF AS = "Y" THEN GOSUB
380

10120 HOME: A$ = "'INSERT DISKS IN
PROPER DRIVES.': GOSUB 470:
HOME: GOTO 1000

10130 REM GET SLOT AND DRIVE#H

10140 GOSUB 450: PRINT: PRINT: PRINT
TAB(10)"'SLOT=>"S2

SPC(8)"DRIVE=>''D2;

10150 HTAB 16: B$ = "7'': GOSUB
10180: S2 = VAL (A$)

10160 HTAB 32: BS = "2'': GOSUB
10180: D2 = VAL (A$): RETURN

10170 REM GET A KEY

10180 GET A$: IF (AS < "1' OR A$ >
BS) AND A$ < > CHR$ (13) THEN
10180

10190 IF A$ = CHRS (13) THEN AS$ =
CHR$ (PEEK (PEEK (40) + PEEK
(41) * 256 + PEEK (36)) - 128)

10200 PRINT A$;: RETURN

10210 REM DISK ERROR

10220 ERR = PEEK (222): IF ERR >15
AND ERR < 254 THEN POKE216,0:
CALL 822

10230 IF ERR = 254 THEN PRINT "TYPE
AGAIN PLEASE:": PRINT: RESUME

10240 IF ERR = 255 THEN STOP

10250 IF ERR = O THEN A$ =
"INITIALIZATION ERROR"

10260 IF ERR = 1 THEN A$ = "WRITE
PROTECTED"

10270 IF ERR = 2 THEN A$ = "VOLUME
MISMATCH ERROR"

10280 IF ERR = & THEN A$ = "DRIVE
ERROR"

10290 IF ERR = 8 THEN A$ = ""READ
ERROR"'

10300 VTAB 20: GOSUB 450: PRINT CHR$
(7): END

62000 REM DATA FOR MARKS

CHECKSUMS
10 - $BADD 410 - $9A03
20 - $9813 420 - S$FF36
30 - $4D3B 430 $713A
40 - $AD92 440 - $0A35
50 - $C899 450 - $76B5
60 - $1FBA 460 - $51E2
70 - %0061 470 - $CCA2
80 - $835F 480 - $7ADD
90 = $E1N 490 - SEEBS8
100 - $ADOE 500 - $3A54
110 - $57B6 510 - $5FCB
120 - $8472 520 - S$D7BE
130 - S$617E 530 - $A4CF
140 - SOF1F 540 - 91447
150 - $F183 550 - $0523
160 - $C59A 560 - $0DO7
170 - $6DEC 570 - S$EACT
180 - $56EA 580 - SABSE
190 - S$D2AC 590 - $62FA
200 - S$1EEF 10000 - $ADCS
210 - $C7D5 10010 - $074E
220 - $7BTE 10020 - SE36A
230 - $F7E4 10030 - $A272
240 - $596A 10040 - S$DE1E
250 - %5089 10050 - $32F3
260 - $7080 10060 - $58BE
270 - $AD47 10070 - $2C16
280 - S$E373 10080 - $0328
290 - $4B8B 10090 - $E82F
300 - SFFE7 10100 - $6FDO
310 - $4DD1 10110 - $60F3
320 - $4DA3 10120 - s$9cce
330 - $C76F 10130 - $BBE7
340 - S01FO 10140 - $2909
350 - SFOAE 10150 - $1F41
360 - 85452 10160 - $81FC
370 - $C2A5 10170 - $03AA
380 - $8A57 10180 - $4592
390 - S$65AE 10190 - $AF74
400 - $15FA 10200 - $BSSE

10210 - $E996 10260 - $1208

10220 - sprcy 10270 - SE779

10230 - $6FB9 10280 - S$AL6B

10240 - $7772 10290 - $578BD

10250 - s$c5ec 10300 - $636F
62000 - $2462

Source Code

1000 *

1010 * Super |0B machine routines

1020 *

1030 +~ BY RAY DARRAH

1040 *

1050

1060 RWTS.B800 .EQ $03D9 ENTRY POINT T

0 RWTS @$B800

1070 INVOKERROR .EQ $D412 ROUTINE THAT

CAUSES BASIC TO DO THE ERROR CONTAINED IN X

1500 TAX TRANSFER IT T
0 X SO BASIC WLL INDUCE THE FALSE ERROR CODE
1510 JMP INVOKERROR CAUSE A BAS
IC ERROR

1520

1530 *

1540 * MOVE THE DISK ARM *
1550 *

1560

1570 MOVPHASES LDA #$00 ROUTINE TO SE

T UP THE REGISTERS BEFORE CALLING SEEKABS

1580

LDX #$00

X AND A HAVE

DUMMY NUMBERS THAT WILL BE POKED INTO BY
""MOVE S PHASES"'

1590 JMP SEEKABS

1600

1610 =

1620 * CAUSE ERROR IN CONTROLLER *
1630 *

1640

1650 BASICERR ~ LDX BAS.ERR BASIC HAS MAD
E AN ERROR SO CAUSE THE ERROR NUMBER AT 222
1660 JMP INVOKERROR

1670 *

1680 * POP OFF RETURN *
1690 *

1700 POP PLA ROUTINE TQ PO
P OFF ONE RETURN (BASIC) ADDRESS

1710 TAY

1720 PLA

1730 LDX BAS.ERR+1 GET WHAT THE
STACK WOULD BE IF THE GOSUB WASN'T THERE

1740 XS PUT THAT AS
THE STACK POINTER

1750 PHA

1760 TYA RESTORE THE
LAST RETURN ADDRESS

1770 PHA

1780 RTS

1790

1800 *

1810 = EXCHANGE RWTS's *
1820 *

1830

1840 LDY #0 ;ZEROQ LSB's
1850 STY SWFRM :AND HAVE Y
AT ZERO FOR START

1860 STY SWTO

1870 MOVE.PAGE LDA (SWFRM),Y :GET A BYTE
1880 PHA JAND SAVE IT
1890 LDA (SWT0),Y JGET THE BYTE

WHERE THE SAVED ONE GOES

1900 STA (SWFRM),Y ;AND STORE |
T WHERE THE SAVED ONE WAS

1910 PLA ;GET THE SAVE
D BYTE

1920 STA (SWTO)Y ;AND STORE IT
WHERE IT GOES

1930 INY ;:DONE WITH A
PAGE

1940 BNE MOVE.PAGE ;NO KEEP WOR
KING ON IT

1950 INC SWFRM+1 [GET NEXT MSB
1960 INC SWTO+1

1970 DEC PAGES ;DECREMENT T

HE NUMBER OF PAGES TO MOVE
BNE MOVE.PAGE ;IF NOT DONE

1990

0300:
0308:
0310:
0318:
0320:
0328:
0330:
0338:
0340:
0348:

0350:

1980
, MOVE ANOTHER PAGE
RTS

Super IOB HEXDUMP

A9 03 AD OA 20 D9 03 BO
16 60 01 60 01 00 00 0O
18 03 00 27 00 0O 00 0O
00 60 D1 00 01 EF D8 AD
17 03 4A 4A 4A LA AA 4C
12 D4 A9 00 A2 00 4C AO
B9 A6 DE 4C 12 D4 68 A8
68 A6 DF 9A 48 98 48 60
AD 00 84 FC 84 FE B1 FC
48 B1 FE 91 FC 68 91 FE

C8 DO F3 E6 FD E6 FF Cé

;FINISHED, RTS

$BD35
$9CF5
$4320
$55A7
$B428B
$8038
$6E1C
$FDDY
$3777
$AABY

$921F

NO PIRACY ZONE

2

INFORMATION FOR HONEST USERS
Thousands of Apple users have already joined us.

Hardcore COMPUTIST...

What you can't get anywhere eise.

® Techniques to unlock software

@ Unlocking tutorials for beginners

® Tips on program modification

@ How to modify DOS

® Game secrets PLUS Advanced Play-
ing Techniques (APT's) - how to get
those extra ships and weapons

® In-depth product reviews

@ Straight answers to your questions

If you're a vigorous Apple computist,

YOU CAN'T AFFORD TO BE
WITHOUT US ANY LONGER!

1080 RWTS.1900 .EQ $1E00 ENTRY POINT T
0 THE RWTS AT $1900

1090 SEEKABS .EQ $B9AD ENTRY POINT T
0 THE SEEKABS ROUTINE AT $B800

1100 BAS.ERR .EQ 222 :BASIC ON ERR
ERROR CODE

1110 SWFRAM EQ $FC EXCHANGE FR
OM PARAMTER

1120 SWTO EQ S$FE ‘EXCHANGE RW
TS 'T0’ PARAMETER

1130 PAGES .EQ $E0 :NUMBER OF PA
GES OF MEMORY TO EXCHANGE

1140 .OR $0300 STARTS AT PAG
E THREE

1150 TF 10B.0BJO

1160

1170 *

1180 # CALL RWTS «
1190 #

1200

1210 10 LDA /TABLETYP ENTRY POINT
FOR CALING THE RWTS THROUGH BASIC

1220 LDY #TABLETYP AY POINT TO
THE 108 TABLE

1230 JSR RWTS.B800 GO TO THE RW
TS AT $B800

1240 BCS DOS.ERR IF THE CARRY
SET THEN CAUSE BASIC ERROR

1250 RTS OTHERWISE, AL
L IS WELL SO RETURN

1260 TABLETYP .HS 01 TYPE OF TABLE
(1=108)

1270 SLT HS 60 SLOT

1280 DRV HS 01 DRIVE

1290 VOL HS 00 VOLUME

1300 TRK HS 00 TRACK

1310 SCT HS 00 SECTOR

1320 DCTPTR DA DCT POINTER TO TH
E DEVICE CHARACTERISTICS TABLE

1330 BUFFERLO .HS 00 ALWAYS MAKE
LSB OF BUFFER POINTER ZERO!

1340 BUF HS 27 SECTOR BUFFE
R PAGE POINTER

1350 NOTHING .HS 00 NOT USED

1360 BYTCOUNT .HS 00 BYTE COUNT FO
R PARTIAL SECTOR (0=256 BYTES)

1370 CMD HS 00 COMMAND COD
E (0=SEEK)

1380 RWTS.ERR HS 00 ERROR CODE T
HA THE RWTS.B800 RETURNS WITH

1390 OVL HS 00 VOLUME NUMB
ER OF LAST ACCESSED DISK

1400 OLDSLT HS 60 SLOT PREVIOUS
LY ACCESSED

14100LDDRV .HS 01 DRIVE PREVIOU
LSY ACCESSED

1420 DCT HS 00 DEVICE TYPE O
F DEVICE CHARACTERISTICS TABLE

1430 PHASES ~ .HS 01 PHASES-1 PER
TRACK, (0 OR 1)

1440 MOTORCNT .HS EFDS MOTOR-ON TIM
E COUNT

1450 DOS.ERR LDA RWTS.ERR DOS HAS HAD A
N ERROR, GET THE ERROR CODE

1460 LSR DIVIDE IT BY 16
1470 LSR

1480 LSR

1490 LSR

0358: EO DO EB 60

g

$3160

Annual Subscription Rates
Please check one of the following:

i | L T e $25
] Canada, APO/FPO, 1st Class $34
MR s e $39
Eraoria Al = e $60
] Foreign surface mail $40
f% L
=4
s |Bf 3
21 2823
ig 2d3s
=3 = 0:3
5 = 2@ g
£3 % e E
a [- - ¥
5 3 Sta 8
2 > P8 s
5 E oa
mE Ia
Ed
cE
ok o 8
g3 2 22 3
e . 2 B
g E 8@ =

Hardcore COMPUTIST no.9 23

Softkey For Sierra On-Line Software

By Doni G. Grande & Clay Harrell

Screenwriter I1 V2.2 ($129.95)

The Dicxtionxary ($179.95 for the pair)
Sammy Lightfoot ($29.95)

Time Zone V1.1 ($160.69)

Apple Cider Spider (529.95)

Qils Well ($29.95)

Cannonball Blitz ($29.95)

Sierra On-line, Inc.
36575 Mudge Ranch Road
Coarsegold, CA 93614

Requirements:

Apple with 48K

COPYA

A Sector editing program such as Disk Zap
A blank disk for each of the above programs

The folks at Sierra On-line have come
to a very realistic view on copy protection.
Some of their earlier releases such as Lunar
Leepers used elaborate protection schemes
like spiral tracking (uses Y tracks spiraled
along the disk). The problem with this kind
of protection is that it is expensive, and it
doesn’t work on all flavors of Apples (//e,
etc.). On-Line probably also had to send out
to have the copies made because you can’t
exactly run COPYA to make thousands of
commercial copies of a spiral disk.

With competition increasing, and the high
awareness to cut internal costs, On-line has
chosen not to use elaborate protection
schemes on their newer releases (Oil’s Well,
Sammy Lightfoot, Screenwriter II, ver 2.2,
etc.). Instead, they use a good basic scheme
that will often deter those equipped with
Locksmith or Nibbles Away, and even dis-
courage those who try to deprotect their pro-
grams altogether. This protection scheme is
interesting in that one can usually use COP-
YA to copy the disk, but the copy will not
run. Somehow, the programs know that an
original disk is not in the drive,

The basis of Sierra On-Line’s protection
scheme is called a nibble count. When the
master disk is copied at On-line, the copy
program counts the number of bytes on a
certain track and then stores this value on
the disk. This value is different for each copy
of the program because miniscule changes in
the disk drive speed can cause extra or few-
er bytes to be put on a track when it is writ-
ten. Normal DOS does not care about this,
since it uses a certain byte (FF) as a filler.
When a disk is booted, it reads that track and
compares the number of bytes read to the
number stored on the disk. If they don't
match, the program bombs out! Locksmith
and several other bit copy programs allow
you to do nibble counting when making a
copy. However, if you have ever attempted

24 Hardcore COMPUTIST no.9

this, you know how very difficult it is and
how long it takes to get a reliable copy.
Though the disk drive speed is highly regu-
lated, it only takes a fraction of a turn to
make a difference of a few bytes on the
track.

The best way around the problem is to find
the protection code and disable it. Fortunate-
ly for us, Sierra On-line uses the same tech-
nique on a number of their disks, so if you
figure out how to copy one, you can copy
a number of them. If you are interested in
how they implement nibble counting, read
on. Otherwise, skip the next section and go
on to the step-by-step ‘‘cookbook’ in-
structions.

Real Men Write
Self-Modifying Code

The protection code used by Sierra On-line
is a great example of hiding the true func-
tion of machine code! Read on, and you will
see examples of code within code within
code. A typical disassembly of the protec-
tion code might start out:

0900- <CcE 03 09 ©DEC $0903
0903- EF 777
0904~ 03 727
0905- 09 AD 28 ORA #SAD
0907- 28 PLP
0908- 09 49 ORA #$49

It looks like there really isn’t anything there.
But notice that the first instruction decre-
ments the very next byte! If we look at this
same code after the first statement executes,
we see:

0900- CcE 03 09 DEC 30903

0903- EE 03 09 INC 30903
0906- AD 28 09 LDA $0928

0909- 49 8A EOR H$8A
090B- 0O 01 BNE $090E
090p- 20 8D 28 JSR $2880D
0910- 09 18 ORA #3%18

It doesn’t even look like the same code! No-
tice, too, that the ‘“‘new’’ instruction at $0903
restores $89@3 to its original value of $EF
so that the program hides itself again. From
there, a simple sequence of instructions first
gets a byte from $0928 (which happens to
be $60), EORs it with $8A (giving $EA) and
then executes a branch instruction. As I have
shown, the accumulator is not zero, so this
branch is taken...right into the middle of
another statement! $999E is in the middle
of the following JSR! However, by listing
from $A90E, the following code is revealed:

090E- 8D 28 09 STA $0928

0911- 18 cLC
0912- DO D1 BNE $0915
0914~ 4C AD 29 JMP $29A0
0917- 98 TYA

Ah ha! There is really a STA hiding there,
and it stores the accumulator back to $8928.
Then a clear carry is done to set up the car-
ry flag to be used in a moment. The branch
is always done since the accumulator doesn’t
end up being zero (it is $SEA, from above).
Once again, this branch is to the middle of
another instruction! Listing from $8915, you
see the following:

0915- AOD 29 LDY #%29
0917- 98 TYA

0?18- 90 01 BCC $091B
091A- 20 59 00 JSR $0059
091p= 09 99 ORA #399

So, another bit of hidden code! The Y-
register is loaded with the value $29, copied
into the accumulator, and a branch is made
(remember the carry flag that was cleared
above?). Once again, the branch is to the
middle of another instruction (are you be-
ginning to get the picture?). Disassembling
the program from $891B gives:

0918- 59 00 09 EOR $0%900,Y
091E- 99 00 09 STA $0900,Y

U9 Z1= 68 INY
B922=, DO F3 BNE $0917
0924- 88 DEY
0925 " 340} BMI $0928

0927- 4C EA E1 JMP SE1EA

Here at last is the core of the code (no pun
intended). This section does an Exclusive OR
of a memory location with the accumulator
and then stores the number back into
memory. The Y register (used as the index)
is incremented and the branch to the top of
the loop is taken until Y is zero (it counts
from $29 to $FF). When the Y register is zero
it is decremented, and since it is now nega-
tive, the branch is made into the middle of
another instruction. You notice that this is
at $0928, our old friend from above which
was converted from a $60 (RTS) to an $EA
(NOP). Once all the EOR’s have been ex-
ecuted on memory from $0929 to $A9FF, the
following code is revealed.

0%28=1 NEA NOP

0929- ¢C8 INY

092A- BC F4 B7 STY $B7F4
092p- 8D EC B7 STA $B7EC
0930- A9 B7 LDA #$B7
0932- AD E8 LDY #SES8
0934- 20 D9 03 JSR %0309
0937- BD 89 CO LDA $C089,X
093A- A9 05 LDA #8305
093c- 8D0 00 BB STA $BBOO
093F- 20 90 09 JSR $0990

0942- 10 01 BPL $0945
0944- 20 €8 CO JSR $cOC8
0947- 30 5D BMI $09A6
0949- 8C €O 90 STY $90¢0
094c- F8 SED

094D- BD 8C CO LDA $CO8C,X
0950- 10 OA BPL $095¢C
0952- €9 €9 CMP #SC9
0954- DO 0D BNE $0963

0956- BD 88 cD LDA $CO088,X
0959- 4C 00 09 JMP $0900

This is the start of On-line’s infamous *‘nib-
ble count” routine which reads track zero
and counts the bytes on the track. If the
count is not correct, then the program pro-
ceeds to wipe out the computer’s memory.
If the count is correct, a jump is made to
$0900 which is the start of the entire rou-
tine. The EOR operations are performed all
over again and the result is that the valid code
is returned to its original, obscured state.
Pretty sly those On-line people!

How does the routine ever stop? Remem-
ber that the program first EORed location
$0928 ($60) with 38A and then stored the
result ($EA) back into $0928, which was later
branched to? The second time the program
is executed, the contents of $8928 ($EA) are
EORed with $8A, giving a value $60 (the
original value) which is then put back into
$A928. When the branch to $0928 is later ex-
ecuted, it encounters $60, which just happens
to be the machine code for RTS!

As you can see, the people who write the
protection schemes are clever. However,
sometimes they are so clever that they fool
themselves, and that is their downfall. Ap-
parently, they believed that the above code
was so clever, and that it was so well hidden
that they relied totally on IT protecting their
software. In other words, it is the only check
done to see if the disk in the drive is an origi-
nal. Also, probably since Sierra On-line pub-
lishes software written by a number of
authors, this protection program is called as
a stand-alone subroutine, returning no
values! The result is that it can usually be eas-
ily defeated just by changing the first byte
to $60 to keep it from executing at all!

I mentioned above that usually the pro-
tection scheme could be defeated by chang-
ing the first byte of the protection code to
$60. One case where this won’t work is in
Time Zone. Time Zone does a checksum on
the protection code several times before it ac-
tually executes the protection code (Sammy
Lightfoot also does a checksum between
loading each level after the first!). The check-
sum code for Time Zone, whose nibble count
routine lives at $17080, looks something like
the following:

Initialize Pointer to $1700

50AC- A9 00 LDA #300
SOAE- 85 FE STA $FE
5080- A9 17 LDA #$17
50B2- 85 FF STA $FF
Initialize all Registers
50B4- A9 00 LDA #300
50B6- A0 00 LDY #$00
50B8- A2 00 LDX #300
Ready Carry for Add
50BA- 18 CLC
Add Memory Byte
S0BB- 71 FE ADC ($FE), Y
Multiply by 2
508BD- OA ASL
Increment Index
50BE- (8 INY
Decrement Counter (256 Times)
S0BF- CA DEX

Loop until Done

50c0- DO F9 BNE $50B8B
Compare Checksum to $1E
50¢2- €9 1E CMP #$1E
50C4- EA NOP
Branch if Equal
50c5- FO 03 BEQ $50CA
$09CB Contains JMP $09CB
50C7- 4C CB 09 JMP $09CB
Return to Calling Routine
50ca- 60 RTS

The above assumes the protection code is lo-
cated at $1700, which it is in Time Zone. The
easiest way to foil this checksum routine is
to change the first byte of the nibble count
routine to a $6@ (RTS) and also to alter the
next byte of the routine so that the check-
sums will be identical even though the code
has been changed. By experimenting with the
code listed above, it turns out that the second
byte of the nibble count routine should be
changed to a $EA. However, this will only
work on Time Zone because the other pro-
grams seem to use a different checksum rou-
tine. For these other programs (Oils Well,
Sammy Lightfoot, etc.) it turns out that the
second byte needs to be changed to a $AD.
Screenwriter II ver. 2.2 and The
Dicxtion*ary do not have the checksum rou-
tines, so you can get away with just chang-
ing the first byte of the nibble count routine
to a $60.

The Steps

In a step-by-step fashion, here is what you
need to do to make a copyable version of
many of Sierra On-line’s programs:

1) COPYA the original disk.
RUN COPYA

2) Run your sector editor. Examine each sec-
tor for the values $CE $63. If you have an
editor such as Disk Zap from Bag of Tricks,
or Tricky Dick with The Tracer you can au-
tomatically search for this sequence. I have
found that this sequence of bytes is usually
at the very beginning of a sector.

Note: Sometimes this code appears more
than once, as in Screenwriter II, so be sure
to search the entire disk to find all occur-
ences!

3) Change the $CE to $6@ and the $03 to an
$AD ($E@ for Time Zone) and rewrite the
sector, and that’s all there is to it!

Program Trk Sec Byte From To

Screenwriter 1A 0E 00 CE 60
Il 08 OF 00 CE 60
version 2.2 0C 0F 00 CE 60

17 OF 00 CE 60

The 10 0D 00 CE 60
Dic*tion=ary

Sammy 05:0nsi0F 00 CE 60
Lightfoot 05 OE 01 03 AD

Time Zone 03 OF 00 CE 60
version 1.1 03 OF 01 03 EO

Apple Cider 12 01 00 CE 60
Spider 12 01 01 03 AD

Oil's Well 10 OF 00 CE 60
I 01 03 AD

Cannonball 18 06 00 CE 60
Blitz 18 06 01 03 AD

An alternate method which worked for
Sammy Lightfoot and Time Zone involves
disabling the code which does a JSR to the
nibble count routine. This technique may
also work on other SOL disks which direct-
ly JSR or JMP to the nibble count routine.
Apple Cider Spider and Oil’s Well apparent-
ly do an indirect JMP or JSR to their nibble
count routines so this alternate technique will
not work on them.

Alternate Method
1) COPYA the disk.

RUN COPYA

2) Use a sector editor to search the disk for
a byte sequence of $CE $@3 which is usually
found at the beginning of a sector.

3) When you find this sequence, look at the
byte which lies eight bytes past the $CE. This
byte is the high order byte of the address
where the nibble count routine runs, Write
down the value of this byte. For example,
if the CE is found at the beginning of the
sector and the eighth byte is #9, then the pro-
tection code is located at $0998. Now search
the disk for a JSR $0900 (20 @0 @9). This
will be the call to the protection code.

Note: There may be more than one call to
this code, so be sure to search the entire disk!

4) Change the JSR XXXX you find to EA
EA EA, rewrite the sector, and you are done!

For Time Zone and Sammy Lightfoot,
here are the sector edits which are needed.

Program Trk Sec Byte From To

Sammy 0D 00 98 20 EA
Lightfoot 0D 00 9C 00 EA
i8] 00 9D 9E EA

Time Zone 03 0B FO 20 EA
version 1.1 03 0B F1 00 EA
03 0B F2 1ifg EA

Hint: If you try the first method and every-
thing seems to work fine up to a point and
then the program just hangs, try the alter-

nate method. g

Hardcore COMPUTIST no.9 25

The Visible Computer: 6502
Software Masters

3330 Hillcroft Suite BB
Houston, TX 77857

$49.95

Requirements:
Super IOB program
Blank disk

The Visible Computer program

The Visible Computer: 6562 is an excel-
lent educational program designed to teach
6502 machine language to those would-be
Bill Budges among us. The program allows
the user to step and trace through machine
language programs, displaying the effects
upon registers and memory in hi-res graph-
ics. The package comes with very good
documentation but unfortunately, the disk
is copy-protected. With the following proce-
dure The Visible Computer: 6562 can be co-
pied and modified to work with normal DOS
3.3.

The Visible Computer uses a modified
DOS as its primary form of protection. In
addition to the DOS marks being altered and
the encoding manner, most of the DOS com-
mands have been obliterated. Because of a
few mistakes by the creators of The Visible
Computer, we can easily capture its strange
RWTS and use it to copy the disk. Once a
copy has been made, the main program
needs a few modifications in order to work
with DOS 3.3.

Start by turning on your computer. Next,
place your original version of Visible Com-
puter in the disk drive but DO NOT CLOSE
THE DRIVE DOOR. Type

CT'R[,C

and shut the door. In a few seconds you will
get a ‘‘Break’’message and a cursor.

Right away I thought I was ‘in’ to the visi-
ble computer. But the RUN flag gets set dur-

ing The Visible Computer’s boot process.
Therefore, anything you type will execute the
program in memory (never to give control
back to you).

This is where we take advantage of their
first mistake. We type

FP

which clears the program in memory but
more importantly, clears the RUN flag. Now
you are ‘in’ to the Visible Computer. Sure
the DOS commands have been obliterated,
but you can still call them directly. Try a

CALL 42358

to see the CATALOG.

What we have to do now is save the RWTS
portion of the DOS in memory so that Su-
per IOB can use it. This is accomplished by
the monitor command

1988 <B886.BFFFM

Next, boot your Super IOB disk and save the
RWTS with

BSAVE VISICOMP.RWTS,
AS$1900,1.5800

With this file, all you have to do is use the
Super 1I0OB controller from page 27.

Once the copy has been made, there are
a couple of modifications and deletions that
must be made to the main Applesoft pro-
gram called VC so that it will work properly
with DOS 3.3.

The first deletion is line 1 of the program.
This line is a REM statement containing a
CTRLM, a“™'D and the DOS command FP.
This has the effect that if the line 1 is listed,
DOS will process the FP command and de-
lete the program. This problem is easily rec-
tified by deleting line 1.

The BSAVE command in the Visible Com-
puter’s DOS has been changed to “SO-
REN”. The only place this command
appears is in line 13910. Of course, the nor-
mal DOS 3.3 command “BSAVE’’ must be

$3ppp- sc1

% 8¢t -CLI

26

pipp1 -JISR $FFCC

restored to this line.

Line 18000 determines whether the pro-
gram can Read and Write to normal DOS
3.3, depending upon the setting of the Visi-
ble Computer’s “MASTER” command.
This line contains two calls to The VC’s
modified DOS which need to be removed.
With these two calls removed, the
“MASTER” command will still function
normally except that the program will not be
able to read files from the original Visible
Computer program disk.

Finally, and most importantly, line 20730
contains a CALL that will INIT the disk if
the program is used under normal DOS. The
INIT command has been removed from the
Visible Computer’s DOS, so the CALL is
harmless until the program is run under DOS
3.3. This nasty little line must be completely
deleted.

Here are the exact steps to go through to
deprotect The Visible Computer.

Revealing The Visible Computer

1) Turn on the computer and tell it to break
e,
2) Insert the Visible Computer disk and shut
the drive door.
3) Clear the RUN flag
FP
4) Enter the monitor
CALL-151
5) Move the RWTS to a safe place
1966 <B868.BFFFM

6) Boot a 48K slave disk with a short HEL-
LO program

Co8G
7) Save the RWTS

Softkey
For The
Visible

Computer

By Jared Block & Bob Bragner

BSAVE VISICOMP.RWTS,
A$1986,1.$800

8) Load Super IOB and type in the controller
on this page.

SAVE SUPER IOB.VISICOMP
9) Copy the Visible computer
RUN

1) Load the main program from the copied
disk

LOAD VC

11) Delete line 1 so the program can be list-
ed normally

1

12) List line 13918.
It should read:

13910 VTAB 20: PRINT D$''SOREN''P2

$Z%

Change this line so it has a normal BSAVE
command

13910 VTAB 20: PRINT D$''BSAVE''P2
$Z%

13) Line 18000 contains some CALLS to
THE VC’s DOS which must be removed.
This line now reads:

18000 PV = T: CALL 47741 : 1F P28 =
''OFF THEN PV = F:CALL 47741: REM
SET NRML,PRTCT DOS'S

Change this line so it reads;

18000 PV = T: IF P2% = "TOFF'' THEN
PV = F: REM SET MASTER ON/OFF

14) Line 26730 contains a CALL which will
INIT normal DOS 3.3 disks.
It reads:

20730 CALL PEEK (40222) + PEEK
(40223) * Q4 + 1
Be sure to get rid of it by typing

20738

15) If you wish you can also have the pro-
gram set the RESET vector so that the pro-
gram does not reRUN itself when the RESET
key is pressed. For instance, if you want to
enter the monitor when RESET is pressed
change line 2 to read:

2 POKE 1010,89: POKE 1011,255:CALL
-1169

16) Finally SAVE the modified program
back to the copied disk

SAVE VC

As a CATALOG should reveal, this disk
is completely broken and can be copied with
COPYA or even FID. Frequent sessions with
TVC are recommended for aspiring bit-
brains. Good luck!

Yisible Computer Controller

1000 REM SWAP CONTROLLER (VISIBL
E COMPUTER)
1010 TK = 3:ST = 0:LT = 35:CD = W

R
1020 T1 = TK: GOSUB 490: GOSUB 36
0

1030 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1030

1040 IF BF THEN 1060

1050 ST = 0:TK = TK + 1: IF TK <
LT THEN 1030

1060 GOSUB 490:TK = T1:ST = 0: GOSUB
360

1070 GOSUB 430: GOSUB 100:ST = §
T+ 1: IF ST < DOS THEN 1070

1080 ST = 0:TK = TK + 1: IF BF =
0 AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT "EVERYTHING O.
K. DOS NOT COPIED'": END

10010 IF PEEK (6400) < > 162 THEN

PRINT CHR$ (4)"BLOADVISICO

MP.RWTS,A$1900"

Bl Not just a reprint of old data

If you took all the old Hardcores...
tore off the fancy covers...

We Call It:

deleted all the editorial material, out-of-date interviews and letters...
updated the remaining material, and THEN,
included the MOST RECENT and MOST COMPLETE LIST of parameters for the major bit-copy programs...
and packed it all into a single volume,
you'd have the core of Hardcore Computing.

THE BEST OF HARDCORE COMPUTING

B Not a collection of unrelated Please send me:
articles '
] : [0 The Best Of Hardcore Computing AND Program Disk. $19.95
But an updated, rewritten , improved con- [0 The Best Of Hardcore Computing. $14.95
solidation of ‘The Best’ of Hardcore Com- L PG QIS ORI vy o eonpuinars o o) v 5l SRR RS e Taasss iy vis T 4 $9.50
puting.
From the first article and program to the Name
last, discover the heart and soul of your A
Apple with DiskEdit, DiskView, ddress
Parameters, Super |I0B (Hardcore's OWN City St Zi
deprotecting and copy program), games P
and more... Country
DON'T LIKE TO TYPE? Visa/MC Exp
Order now, and receive The Best Of
Hardcore Computing PLUS the Program Signature
{?ﬂlf::h::grtosr\1:t£es |:e:idents add 7.8% sales tax. ff": check.or.monay order to:
Foreign orders add 209 shipping & handling. ardcore COMPUTIST, Box 44549-C, Tacoma, WA 98444
U.S. funds only).

Hardcore COMPUTIST no.9 27

The Visible Computer:6502

and

The Apple 11-6502
Assembly Language Tutor

A review and comparison of two
products which can help you learn the
ins and outs of 6502 Assembly Language

Reviewed by Martin Collamore

The Visible Computer: 6562
Software Masters

3338 Hillcroft, Suite BB
Houston, TX 77657

$49.95

Introduction

The Visible Computer: 6562 (henceforth
known as TVC) is a text and program
designed to teach assembly programming.
The text introduces an assembly command,
then its execution can be viewed step-by-step
on the simulator program’s hi-res display.

So far as I can tell, it is the only product
of Software Masters, Houston, Texas. TVC
was written by Charles Anderson and retails
for $49.95.

Hardware Requirements

Touse TVC, you’ll need a I + or Ile and
one disk drive. Apple II standards require
a 16K RAM card or Applesoft ROM card.
A printer is supported.

Documentation

The 141 page manual is spiral bound so
that it lays flat (yeah!). The printing is good
and the writing style is readable and amusing.

It begins with a good explanation of hex-
dec-binary numbering and computer hard-
ware configuration. After a session showing
the operation of the simulator, you're off to
explore the hows and whys of opcodes.

A command is first explained in the text.
Then you load an example program to be run
using the simulator. The text provides a blow
by blow account as the simulator shuffles
data between registers. The explanations, in
most cases, are quite thorough.

The pace is slow at first, as it should be.
By the time stack operations are explained,
you’ve covered the basics and, believe it or
not, you are somewhat comfortable with
them. The final examples are fairly complex,
but well documented.

Screen Display

Upon booting the TVC disk, you’ll be con-
fronted with just about all the information
you’d ever need to follow an assembly pro-
gram’s execution. The hi-res screen displays
the contents of all the microprocessor’s
registers as well as a bit by bit display of the
processor status register. Also shown are
four registers that perform scratch pad func-

28 Hardcore COMPUTIST no.9

tions during the execution of a programming
step.

A number of other informative tidbits are
displayed: a message window to show what
the TVC is doing (reading, fetching, writing,
eic.), a status area to display the execution
speed selected, a window for dissassembly of
the lines as they are executed, a window to
show the dissassembly of the next instruc-
tion, and a cursor for user input.

Working With TVC

First off, the program is fun to watch, The
values actually scoot from one register to
another as the code is executed. You can con-
trol how fast this takes place, pausing after
each “‘microstep’’ if you wish. Optionally,
you can view two different ranges of memory
during a run to see what affect the program
is having. This is nice when stack operations
are demonstrated because you actually see
the locations change. Unfortunately, the use
of this option covers up some of the registers
displayed, but the important ones are still
visible.

More goodies are at your disposal. Some
of these are: hex-dec-binary calculator/con-
verter, editing of memory locations and
register contents, and an erase which is used
to clear the display and view a hi-res page.

Now a few gripes. TVC is written mainly
in Applesoft and, hence, executes rather
slowly. Speedy typists will probably will be
annoyed. It takes 4 seconds to get the cur-
sor back if TVC didn’t understand your
command. If you’ve erased the screen and
want to restore the TVC display, you wait
15 seconds. The author believes that lower
case letters make for better comprehension.
I have a hard time with *“1” and ““I”” or *‘b”’
or ‘6 *’. The default is lower case, but you
can change to upper if you so desire.

The documentation walks you through 24
examples demonstrating the arcane and mys-
terious 6502 opcodes. It’s a lot of informa-
tion and it takes a few “‘ah ha!’’s to absorb
some concepts. Watching how an instruction
is executed really goes a long way in making
it less painful. A picture IS worth a thousand
words. I encountered only one minor bug.
The documentation showed one type of in-
dexed addressing, while the simulator used
another. No big deal; it was fairly obvious,
Obvious? Did I say that? Gosh, maybe this
thing is actually teaching me something!

The author states that the two main rea-
sons for learning assembly language are: 1)
speed and 2) more speed. All that speed is
needed for things like sorting, music, and
animation. The last example programs put-
it-all-together and demonstrate a bubble sort,
a keyboard “‘organ’’, and a hi-res drawing
routine. If you’ve made it that far and are
able to follow these more complex programs,
then you are on your way to becoming a
competent assembly language programmer.

Conclusions
The purpose of TVC is to teach. It’s also

a debugging tool, albeit a somewhat slow
one. Although all 151 opcodes are executed
correctly, it is not an exact copy of a 6502
and may arrive at an answer in a manner
different than the ‘‘real thing”’. &

If you are serious about teaching yourself
assembly language, TVC is a good place to
start. For the most part, the docs are clear,
concise, and understandable. The simulator
program, while not a paragon of speed, is
a terrific way to ‘‘see” how the innards of
that little 6502 monster tick.

Apple II- 6502 Assembly Language Tutor
Prentice-Hall

Englewood CIiff, NJ #6732

$34.95

Introduction

The Apple 11-6502 Assembly Language
Tutor (text and disk) is, obviously, a method
teaching assembly language. Short, user en-
tered programs are used to demonstrate 6502
microprocessor commands. The accumula-
tor and the various register’s contents are dis-
played as the program is executed.

Its author, Richard Haskill, is a profes-
sor of engineering and chairperson of the
electrical and computer engineering group at
Oakland University, Rochester, Michigan.
Not surprisingly, I/0 and hardware interfac-
ing techniques are emphasized.

Published by Prentice-Hall, it lists for
$34.95.

Hardware Requirements

The Assembly Language Tutor (ALT)
manual states that a 48K Apple II or Apple
I1+ with either DOS 3.2 or 3.3 (one drive
needed) is supported. I did not try the pro-
gram under DOS 3.2. In the Tutor, control-
S is used to single step through a program.
This is familiar to those with Autostart
ROM. For those of us with old monitor
ROM, a copy of the Autostart F8 ROM is
needed. This requires either an Applesoft
firmware card or a language card which has
been loaded with a copy of the Autostart F§
ROM and read enabled. The manual says it
also supports a printer, but I wasn’t able to
check on that.

Documentation

The paperback manual is 234 pages and
indexed. The text and schematics are clear,
though some of the photos are of poor qual-
ity. While readable, the manual’s writing
style is reminiscent of a text book. Exercises
are presented at the end of chapters,
although no solutions are offered. This text
book approach is both vice and virtue; Dr.
Haskell leads you in a definite, bit-oriented
direction.

By page 5, you’ve been presented with a
6502 microprocessor pinout and a bit-wise
description of its data bus. After the usual
hex-dec-binary explanations and the instruc-

tions for the use of the TUTOR disk pro-
gram, there is a thorough discussion of
binary coded decimal, two’s complement,
and signed number representation. By page
85, all of the assembly commands have been
presented and, if you've entered them in,
demonstrated. Not exactly bedside reading;
however, a good text book is also a good
reference book.

The next 47 pages contain descriptions of
the Apple video displays. Subjects include:
raster scan, TV RAM, screen soft switches,
and shape tables. Example programs appear
on nearly every page and the treatment is
fairly detailed.

Given the contents of the next hundred
pages, it’s easy to see Dr. Haskell’s true love:
this is where we separate the hackers from
the chip heads. Even if the thought of a sol-
dering iron causes heart palpitations, you'll
still find this part informative.

These last chapters deal with I/O hows
and whys. Ever wanted a 6 channel A/D con-
verter connected to your game I/0 socket?
Make a peripheral board to support ROMs?
How about a parallel or serial interface?
Well, don’t expect a Heathkit approach, just
expect clear schematics, circuit descriptions,
chip data sheets, and assembly language
driver programs. None of these circuits are
especially complex in construction, but some
experience with the care and feeding of chips
would be helpful.

Screen Display

The display is fairly simple: the six 6502
internal registers contents (in binary and
hex), a disassembled line of the next instruc-
tion to be performed, and a raw hex dump
of any 88 continuous bytes. A cursor is used
in the dump display to edit bytes. At the
screen’s bottom is a command line. Hitting
the “*/’ key brings up 14 single letter op-
tions, rather like Visicalc. Each of the op-
tions provide up to 6 single letter suboptions.
This allows flexibility, but keep your manu-
al handy.

Working With The Assembly
Language Tutor

Aside from getting used to the command
line options, using the TUTOR program is
simple. The program lies between $8080 to
$93B2 (safe from DOS boots) plus some zero
page locations. Applesoft uses some of these
locations, so there is no graceful way to exit
except to DOS or the monitior.

In addition to control-S, you can set up
to four break points to halt program execu-
tion. Or you can let it go full tilt. For debug-
ging programs, this is fine. But single
stepping through a large program will require
a lot of key strokes. A word of warning:
since you have free access to memory, you
can bomb the system if you’re not careful.

One nice touch is the ability to calculate
branching offsets. Say you have a branch-
ing instruction to a line 8 bytes backwards
from the next line in the program. The tricky

part is that a “-8” would have to be ex-
pressed in two's complement, ‘‘F8’’. The
TUTOR will calculate these offsets for you.

Conclusions

I admit that I have chip head leanings, so
I found the marriage of assembly level soft-
ware and do-it-yourself firmware interesting.
Some might not. Even so, The Assembly
Language Tutor provides a lot of detailed in-
formation, not only on assembly language
programming, but also on how your Apple
communicates with the rest of the world. It
is a valuable reference book for both
programmers and technicians.

The Visible Computer: 6562
¥S.
The Assembly Language Tutor

In my opinion, The Visible Computer:
6502 and The Apple- 6582 Assembly Lan-
guage Tutor are both excellent educational
packages for those wishing to learn assem-
bly langauge. If you are considering the pur-
chase of either of these two packages you
should be aware that the approach taken by
the two authors differs considerably.

The Visible Computer: 6502’s software is
definitely the more polished and ‘‘user-
friendly’’ (does this term really mean any-
thing anymore?) of the two. The approach
of TVC manual is also quite a bit more
gradual and beginner oriented than that of
ALT.

Because TVC is a 6502 simulation in soft-
ware and operates in ‘‘microsteps’’, the
novice gets to see the effect of each instruc-
tion on the CPU’s registers. The ALT Tu-
tor program whizzes along much faster and
does not allow the user to view the effect of
every instruction with single stepping. This
gives TVC the edge in educational terms;
however, the utility of TVC as a debugging
tool for experienced programmers is reduced
because of the simulator’s slow speed. ALT’s
Tutor program, while not flashy, can serve
as an assembly language development aid
long after the intricacies of the language have
been mastered.

The Assembly Language Tutor manual
also contains a great deal of information that
might come in handy for those wishing to de-
sign their own peripheral cards and/or write
assembly language driver programs. TVC’s
manual does not contain any comparable
material.

If you merely wish to learn assembly lan-
guage programming and have no need or in-
terest in paying homage to the God of
Hardware, I would recommend The Visible
Computer: 6582. It will simultaneously en-
tertain and educate you.

However, if you wish to both learn assem-
bly language and find out how your Apple
and other computers communicate with the
outside world, The Apple II- 6502 Assem-

bly Language Tutor is the product of choice
as long as you can put up with the author’s
textbook approach.

Whichever package you choose, you
shouldn’t be disappointed.

ADVENTURE TIPS

Pirate Adventure

Adventure International

To *‘get parrot’, you must have some
crackers with you.

Wait for the tide to come in before you
set sail.

Who knows best how to sail a “*pirate’’
ship?

Mask Of The Sun

Ultrasoft

Shoot the snake as soon as he rises.
Place the urn on the right pedestal.

In the room with the webs, search though
the debris on the floor.

To find the “‘key’’ to the problem, look
for a ‘“‘weighty’’ solution.

Colossal Caves

Adventure International

You need a giant opener for a giant clam.
The troll is scared easily.

Look for the pirate’s stronghold in the
maze whre all the rooms are alike.

Transylvania

Penguin Software

*“Get bottle”’ from the hut.
Vampires don't like religious objects.
You need flypaper to ‘“‘catch flies'’.
What would a frog like to eat?

Death In The Caribbean
Microlab

If you’ve been there once already, the ring
can take you there again.

Don’t paddle across the river. Shovel your
way across.

Try another route around the alligator.
He’s just there to give you trouble.

Reach into your pocket and flick your
BIC!

Zork 11

Infocom Inc.

That bucket looks big enough to hold a
person.

Don’t just have your cake. Eat it, too!
A flask of water is just like a magnifying
glass.

Getting out of the steel cage will have to
be a “‘robotic’’ effort.

Hardcore COMPUTIST no.9 29

] 780 - $8B83 1390 - $C6E7 1530 - $83A0 1670 - $47BC
Conrmuedfrom page — 790 - $3A5¢C 1400 - $4038 1540 - $F235 1680 - $E3C?2
i 800 - %7038 1410 - $8824 1550 - $987F 1690 - $F49¢C
B ot . b RS T G
' 820 - SECA4 1430 - $DCC8 b = = 2
1333 EE"SF;E“"””““‘”‘ il 830 - $19AD 1440 - $E7D5 1580 - $E5C9 1720 - $A90A
1950 STX FUNG 840 - $297E 1450 - $EVE1 1590 - $FOF4 1730 - $8FDO
1960 RTS 850 - $6560 1460 - $FE71 1600 - $DAB2 1740 - $1B80
1970 860 - $A050 1470 - $ALCE 1618 - :Egog };gg - :;:gz
870 - $EZBE 1480 - $8915 1620 - B -
:ggg SRS é?: g;; ﬁﬁgvﬂﬁq—? 880 - %7407 1490 - $4134 1630 - $19EF 1770 - $A510
2000 LDA LY oV 890 - $48B4F 1500 - $F2CE 1640 - $CD4S
2010 PHA SAVE CV 900 - $1B&4 1510 - $B308 1650 - $FADZ2 ‘g
2020 JSR BASCALC GET ADDR 910 - $C5BD 1520 - $833D 1660 - $9E10
2030 LDA #S$AE PERIODS 920 - :29'3;
2040 LDY LX CH 930 - $BéB
2050 JSR CLEOL2 STORE EM g EP\ 5
= a
2070 AC A0 Cei 960 - $8984 | P0R ¢
970 - S7EBD U E
2080 CMP GY WNDBTM 8 'l} .
2090 BCC .1 NEXT LINEH ggg = :gg:F s
2100 LDA #40 REAL WIDT i
2110 STA $21 :g?g = :3;;3 OH Shhhh -
s i) 1020 - $68¢4 YOU NEED THE
2140 = 1030 - $95E4
2150 * FIX BASIC ERRORS :ggg £ :ggzg Now the fun begins! With the TN SR
2160 = 1060 - $C633 ClA (Confidential Information e N R ST
2170 HS 68ABGBAG 1070 - $3FOA Advisors) on the trail of your
glgg HS DF9A4898 1080 - $2E63 disks, fixing those I/O ERRORS is really fun! But repairing
2900 'HS 4860 1090 - $7538 clobberred disks quickly and easily is actually just the
1108 = :l?jgg beginning. The CIA is a collection of five advanced disk utilities,
1390:= working together to investigate, edit, locate, list, trace, rescue,
Word Searcher Checksums 1123 ::;SES translate, patch, repair, verify, examine, protect, unprotect,
10 - $BADD 520 - SA14LF Hio - $360C analyse encrypt and decrypt programs or textfiles on normal
20 - $9B13 530 - $36E6 1150 - $p108 and even protect_ed disks, be they DOS._ PASCAL: or CPM! As
30 - $4D38 540 - $09CF 1160 - $BBFE you can see this is no ordinary bag of tricks! Itls.mfalcta new
40 - $AD92 550 - $3868B 1170 - $1958 generation disk utility that goes far beyond anything else
50 - $CB99 560 - SESBA 1180 - $4D87 offered so far.
60 - $FF65 570 - $42AF 1190 - $16EQ0 Butbestof all, youdon't have to be a member of the Glazed Eye
70 - $A3BF 580 - $164F 1200 - $913F Brigade to make full use of every one of these sophisticated and
80 - $A%00 590 - 5216: 1210 - $1B5F unique features. We include a copy of the top secret ‘CIA Files’,
?go = :?5:3 603 i :golu :g;g % :gfl'g: a 120 page easy to follow, hand holding tutorial about the Apple
110 - $EBSD 2;0 - $5308 1240 - $C576 (R) disk and the five CIA utilities. Everything you need to know
120 - $FOBA 630 - $2A19 1250 - $A1B4 about disk patching, repair, formatting, protection, and
130 - $6808 640 - SAFAD 1260 - $B784 encoding is explained in plain English!
140 - SFBBY 650 - $A43B 1270 - $8909 We're betting that within a few days of receiving the GIA Kit,
128 5 :8::3 660 5 :g":g 1;33 s :ggil you'll be TRYING to clobber a disk — just to have the fun of
170 - $FO70 ggg s SE;AC :300 _ $87C5 putting it back together! You'll enjoy a new confidence with
180 - $5238 690 - $AA9B 1310 - $FE4T yeHsdaiastorage.
190 - 87422 700 - $667E 1320 - $9484 To get ALL FIVE utilities PLUS ‘The CIA Files', for use with
i Lo Gl i o b 1330 - $A91C Apple (R) l+/lle, 48K, 1 or 2 drives. Send $65.00 Money Order
: = 1e2 3 £ 1340 - S6EBF (Checks. allow time to clear) NOT COPY
220 $696C 730 $ADD2 1350 - $DBSF PROTECTED
230 - $BCH4L 740 - $2365 1360 - $9CDB Credit Cards not accepted
240 - $2967 750 - $D40D 1370 - $64 Sales Dept., HC9 GOLDEN DELICIOUS SOFTWARE LTD.,
250 - $1ASB 260 - SE7AD ek gl S1F33 350 Fifth Avenue, Suite 3308, New York, NY 10001.
260 - %4724 770 - $BBF2
270 - $1A41 Siaie oie oio
280 - %9849 I
290 - S$95E7
300 - s670E i By Hackers r I 1h
310 - %4091
320 - $A6CO e
ol For Hackers
340 - $85F8
350 -sp218 ® ELITE BOARD DOWNLOADS
360 - $F790 i
370 T-ateds ® CRACKING TIPS
3 -
390 -seone ® PHREAKING SECTION MAGAZINE
400 - $F4cC7
410 - $A308B ® GAME CHEATS ; :
420 - $S4EA S b N
430 - $OCED ® PARMS UbSBfI e NOw!
440 - $5008
< ® A .
pio A 2 PROGRAMS Send 25 Bucks for a 1-Year Subscription to:
470 - 34060 ® INTERVIEWS THE BOOT LEGGER, 3310 Holland Loop Road,
;33 :::&;5: i FOR AD INFO. & QUESTIONS Cave Junction, Oregon 97523 ‘
A b CALL BOOTLEG AT 503 -592- 4461 :
i=is ° eiIsiSIS .

30

Hardcore COMPUTIST no.9

Continued from page 8

Obviously, this was not the right course of
action.

The next approach is to use a deprotection
tool such as Super 10B. Super IOB’s ‘swap
controller’ allows us to read in the protect-
ed disk with the protected disk’s DOS and
write it back out to a normal DOS 3.3 disk.
The controller starts reading the protected
disk at track 3 (it does not copy the protect-
ed DOS on tracks @ through 2) and copies
up to track 34. But first we must capture the
protected DOS’s RWTS and store it at $1900
for Super 10B to use.

To do this, boot Cosmic Combat and
when the BASIC prompt appears at the low-
er left of the screen, Reset into the monitor.
Then move the RWTS portion of DOS down
to $1900 with the monitor move command
by typing 1900 < B808.BFFFM. Next boot
a slave disk and run Super I0B.swap. The
swap controller will use the foreign RWTS
at $1900 to read the protect disk. Since we
are booting a slave disk, memory from $908
to $95FF will not be destroyed and hence our
relocated RWTS will not be disturbed.

After using Super 10B to copy the disk,
Cosmic Combat is deprotected and we can
CATALOG our copy and BLOAD (or FID
the files to another disk) and examine the
code to our heart’s desire!

With SUPER IOB.SWAP and Cosmic
Combat in hand, here are the steps to
deprotection:

FOR SERIOUS COLLECTORS

CoinMasstore
StampMasstore
Masstore Collector

For Apple* II, [1+, Ile and compatibles
DOS 3.3 - 48K RAM - 1 Disk Drive

The “Masstore” series for Coin Collecting, Stamp
Collecting and General Collectables (i.e. baseball
cards, etc) provides a quick, convenient and
efficient way to manage collections. These user
friendly, menu driven programs require no addi-
tional programming. Features include:

® Store and sort collections by date/mint mark, Scott
number, denomination, country, ete,

User definable printouts.

Want, Inventory, Evaluation & Price lists.

Up to 14 “condition/grades” for each item.

1) Boot normal DOS 3.3 and initialize a disk
with “HELLO’ as the boot program by

typing

INIT HELLO

2) Boot the COSMIC COBMAT disk and
when the prompt appears at the bottom of
the screen, Reset into the monitor.

3) Move the RWTS portion of DOS down
to $1960

1980 <B866.BFFFM
4) Boot the disk you Initialized in step 1

C6B8G
5) Put in your Super IOB disk and use the
version of Super IOB that has the swap con-
troller

RUN SUPER I0B.SWAP

You may now run, CATALOG, or load
any of the files from the backup disk or
transfer them to another disk with FID. The

start-up program is, of course, HELLO,
which will run Cosmic Combat.

4

Apple][, I[+, //e,
Franklin users:

Do you have problems
backing-up your
copy-protected programs?

Do you lack parameters for
your copy programs?

Are you looking for programs
that you can AFFORD?
Are you hesitating to
upgrade your equipment due to
expensive prices
quoted in other ads?

It’s simple now.
Just drop us a line.

Send $1.00 U.S. funds to:

Reliant
P.O. Box 33610
Sheungwan, Hong Kong

IMPORTANT: We have over 600 PC
name-brand programs and various
hardware offers. Programs @ U.S.
$8.00/PC includes the disk and
registered airmail handling.

e Saves copying time
* For nibble programs

Know where your head is, at all times,
with TRAK STAR constant digital readout

FREE INTRODUCTORY
BONUS with purchase

of Trak Star
= Trak Star disk contains patching

Automatic Insert, Delete, Revise and Find modes.
Up to 100 collections per master disk—copyable
for additional collections.

Summarizes total collection values.

Reference values easily changed.

Complete with sample collections.

Includes detailed step-by-step manual.

In Addition CoinMasstore also:
Estimates and displays reference values for up
to 81 coin grades (Filler-1 to MS-70, Proof-60
to Proof-70).
® Calculates and prints out bullion values.
® [Includes sample Lincoln Cent data base.

CoinMasstore - $59
StampMasstore & Masstore Collector - $49 ea.
Any two - 888 All three - §127

(Calif. residents add 6% sales tax)

Send check or money order to:

SoftShoe Enterprises
10959 Kane Avenue, Dept. 401
Whittier, California 90604

Phone: 213-944-5541
*Apple II/TI+/11e registered trademarks of Apple Computers Inc.

+ Works with nibble copy programs to display

tracks and half-iracks that the program accesses.

+ Operates with any Apple® -compatible program

+ Save time by copying anly the tracks being used

+ Displays up to B0 fracks and half-tracks;
compatible with high density drives

+ If copled program doesn't run, Trak Star displays
track to be recopied

+ Compact size permits placement on top of
disk drive

+ Doas notf use a slot in the Apple® computer,

+ For Apple® I, I+ and /le

Apple is a registered trademark of Apple Computer Inc

software.

e Simple-to-operate, menu-driven
Trak Star software automatically
repairs a bad track without
requiring technical expertise.

Foreign airmail & handling $8.00.
Adapler required for 2-drive systermns: 512
Documentation only: $3
Refundable with purchase of T
Parsonal checks, M.O.,
Visa and Mastercard

ak Star

Midwest MN\ Microsystems

Phone 913 476-7242

Q071 Metcalf [Suite 124
Overland Park, K5 66212

Hardcore COMPUTIST no.9 31

32

Highest Quality, Lifetime Guarantee!

DISKETTES
$1.65 5'4" soft-sectored, hub ring,

envelopes, double density,
double-sided on APPLE drives -- 100 for
$155, 100 single-sided for $149.

Hard plastic stand-up 10-diskette carrying
cases $2.75 each, 4 for $10 (beige, black,
blue, green, grey, red, yellow). Smoked-
plastic flip-top 75 diskette file cases,
$19.50. Heavy-duty nibbling tool, $22.

Disk Drives

199 100% APPLE-compatibie. 40-
$ track, full-size, Siemens type
quality drives, with manufacturer’s 1-year
warrantee. Controller card, $65.

COD & VISA/Master Card orders welcome.
Add $4 for shipping & handling (only $2 for
orders under $50) plus 6% sales tax for DC
residents. Send for our catalog.

VF ASSOCIATES

Western Ave., N.W., Wash., D.C. 20015
(202) 363-1313

QUALITY GUARANTEED
FOR A LIFETIME OF
HEAVY DUTY USE

WE

$20.00 BOX OF 10

PAY SHIPPING

3%'" SOFT SE

§S/SD/, W/HUB RINGS

CTOR,

)

data
byte

AZ. RES. ADD 5% SALES TAX

2361 TEE DRIVE
LAKE HAVASU CITY, AZ. 86403
(602) 855-1592

| |
CHECKS AND MONEY ORDERS WELCOME .uu

-'I

‘79"

Runs on: 48K Apple I,
Il plus, He, or Il {emu-

lation mode| with | or 2,

3.3 drives

ESSENTIAL DATA DUPLICATOR III™

= EDD rarely needs parameter changing
* Automatically finds the beginning of each track

+ Unlike any of the Copycards, EDD backs up the entire disk,

not just what is in memory
* Accurately finds “auto-sync” bytes and their lengths
s Can copy s and 3 tracks

TCH ORDER OR FOR MORE INFORMATION, CALL (707] 257-2420

UTILICO MICROWARE

Hardcore COMPUTIST no.9

3377 Solano Ave., Suite 352, Napa, CA 94558

Easy-View
—— Disk File

Work
Station

® Siores 100 Disks, Dust Free

® 25 Disk Titles Clearly Visible
® Fasi, Easy Access

® Top Flips Back, Locks Upright
® Closed Files are Stackable

9 Add §1.50
Postage & Handling

Cash,check or M.C. No C.0.D.'s

RULE ONE

42 Oljver Street Dept. H
Newark, N.J. 07105

Do you need BACK ISSUES?

Are you tired of typing in programs that are available on disk from
Hardcore COMPUTIST’s PROGRAM LIBRARY?

If you’re reading Hardcore COMPUTIST for the first time,
don’t miss out on past issues.
And, take advantage of our Special Offer.

Please send me the back issues and/or library disks I have

checked below:

Hardcore COMPUTIST #1..........c00uivunn. $3.50
Hardcore COMPUTIST #2 *.......covvvnnn. $3.50
Hardcore COMPUTIST #3 *................ $3.50
Hardcore COMPUTIST #4...............0uu. $3.50
Hardcore COMPUTIST #6..............000.. $3.50
Hardcore COMPUTIST #7..........cccvvvunnn $3.50
Hardcore COMPUTIST #8..........000vuunnn $3.50
CORE #1 Graphicsccoivinivinnnnnn $4.50
CORE #2 Utilitiescoiiiviienininns $4.50
CORE RS PRIIEE . .. o ciwine s v nivinisinmin o w8 iy acu's $4.50

* Limited supplies

BB El B E E R B E

SPECIAL OFFER!

Order these magazine/disk combinations and SAVE.

CORE #1,
Hardcore COMPUTIST #1,

and Library Disk #1 all foronly......... $19.95 O
EORE L s i e s e et $10.00

Name

Address

City St Zip

Country

VISA/MC Exp

Signature

Send check or money order to:

Back Issues/Library Disk Offer
Hardcore COMPUTIST
P.0O. Box 44549
Tacoma, WA 98444

Washington state residents add 7.8 % sales tax. Foreign orders add 20%

shipping and handling. U.S. funds only.

Library Disk #5.......cc0ceciavieiianianna $9.95
Hardcore COMPUTIST #7:
Corefiler
Disk Directory Designer
Hardcore COMPUTIST #8:
Corefiler Formatter
Library Disk #4........c.ciiviiiiinininaas $9.95
Hardcore COMPUTIST #6:
Modified ROMs
Crunchlist
Crucial Code Finder
Library Disk #3......c0iiiiiiiiiiinininnnn $9.95
CORE Games issue:
Destructive Forces
Dragon Dungeon
Library Disk #2......c0iiiiiiniinnnnnnas $19.95
CORE Utilities issue:
Hi-Res Utilities
Dynamic Menu
Line Find
GOTO Replace
GOTO Label
Fast Copy
Hardcore COMPUTIST #3:
Map Maker
Hardcore COMPUTIST #4:
Ultima IT Character Generator

Ebrary DSk #15 e o s sviv s sinaninveasviis $19.95 [

CORE Graphics issue:
Scruncher
Quick Draw
QD.Editor
Design Plus
Faster Shapes
Space Raid

Hardcore COMPUTIST #1:
Checksoft
Checkbin

Hardcore COMPUTIST #2:
Page Flipper
String Plotter
Wall Draw

EHSEE ONIrOl. . s i s b et e $15.00

Disk Edit
10B
Menu
Disk View

S

Cat on a soft thin disk.

You need software insurance. Copy I PC am

Diskettes are fragile, and when a protected program is This is THE disk backup program for the IBM PC and
damaged, the results are expensive and inconvenient. If PC/XT that backs up almost anything. Others may make
you have a backup diskette, though, you can have your similar claims, but in reality, nothing out performs Copy
Apple, IBM or compatible computer back on line within IT PC...at any price. Copy II PC even includes a disk
seconds. ..affordably. That's software insurance. speed check and is another “best buy” at only $39.95.

COpY H PlllS (Apple][,][Plus, lle)

This is the most widely used backup program for the

Apple. Rated as “one of the best software buys of the We are the backup professionals. Instead of diluting
year” by InCider magazine, its simple menu puts nearly our efforts in creating a wide variety of programs, we
every disk command at ypur'-ﬁngertips. The manual, specialize in offering the very best in backup products.
with more than 70 pages, describes protection So, protect your software investment, and get surefire
schemes, and our Backup Book ™ lists simple relief from scratchy disks.

instructions for backing up over 300 popular programs.

A new version is now available that is easier to use and L

more powerful than before. Best of all, Copy II Plus is i -) i

still only $39.95. %'

WildCard 2 (appie 11, [Pius, le) L LR

Designed by us and produced by Eastside Software, %‘a ! oy
WildCard 2 is the easiest-to-use, most reliable card .\ o
available. Making backups of your total load software %‘a

can be as easy as pressing the button, inserting a blank %fa 1
disk and hitting the return key twice. WildCard 2 copies §‘.=;-. @
48K, 64K and 128K software, and, unlike other cards, %f« |
is always ready to go. No preloading software into the ‘?,} e 1

card or special, preformatted diskettes are required.

Your backups can be run with or without the card in NTRA[. pOINT

place and can be transferred to hard disks. $139.95
Software, Inc.

complete.
The Backup Professionals

Important Notice: These products are provided for the purpose of enabling you to

make archival copies only. Under the Copyright Law, you, as the cwner of a computer To order, call 503/244-5782 , 8:00-5:30 Mon.-Fri., or send
program, are entitled to make a new copy for archival purposes anly, and these your order to: Central Point Software, 9700 SW Capitol Hwy,
. : v
roducts will enable you to do 50, = = F
i 3 : : Suite 100, Portland, OR 97219. Prepayment is required.
Fhese products are supplied for no other purpose and you are not permitted to 7 2) B 5
urilize them for any use, other than that specified, Please include $2 for shipping and handling ($8 outside U.S.

or Canada).

