
Device Drivers:
Don’t build a house on a shaky foundation

johnny cache, researcher
david maynor, SecureWorks

Overview

• Problems
• Nifty Fingerprinting Stuff
• Finding and Exploiting Vulns
• Shellcode Design
• DEMOS!!!!!!

Problems?

• Speed to market is so important.
• Some things don’t get tested properly
• New hardware and committee designed

protocols are especially susceptible.

Problems (cont…)

• Although what follows is mostly focused
on 802.11a/b/g the lessons learned can
be applied to lots of things
– Bluetooth
– New 802.11 specs
– Wireless data (EDGE, EV-DO, HSDPA)

802.11

• Why is it so complicated
• Does it have to be
• Can we fix it?
• Consequence’s of complexity:

– Fingerprinting 802.11 implementations
– Exploiting device drivers

Why so complicated?

• "Fear leads to anger. Anger leads to
hate. Hate leads to protocols designed
by committe.” --warlord (?)

Why so complicated

• Partly to ambitious, partly attempting to
deal with legitimate problems.

• -hidden nodes
• -unreliable links
• -other networks on same channel

Can we fix it

• Yes, all it costs is standards
compliance.

• Ignore management frames
• Ignore (some?) control frames
• Remove extra’s (more on these later),

Why is this interesting?

• Complexity is a hacker’s best friend.
• If its not complex theres no room for

bugs. No bugs means no fun.
• 802.11 is not lacking in complexity.

Ethernet

• 3 fields: src, dst, type.

802.11

• Version
• Type
• Subtype
• 8 flags.
• 1,2,3 or 4 addresses, variable positions
w)�HN ���

w6L��L�JL ���

Not done yet..

• Positive acknowledgement
• 11 management frames
• 6 control frames
• ..lots of subtypes for each.
• ..various encryption fields (IV, MIC/ICV,

etc)

More features!

• Ad-Hoc
• Power savings
• 2 types of MAC (PCF vs DCF)
• .11e QoS
• Geo-locating proposed? WTH does

‘media access control’ have to do with
geo-locating

What do you get when you remove the extras?

Nintendo DS
No Wi-Fi certification

Nowhere near 802.11 compliant

Ignores de-auth/disassociates

Possibly ignores control packets

Works great!
(probably doesn’t roam very well)

Fingerprinting 802.11

• Why bother
– Target exploits
– WIDS can monitor users’ chipset, driver.
– Possibly refine OS fingerprints

Fingerprinting 802.11

• Why is this cool
– No other link layer protocol fingerprints that

I know of
• Why is this possible?

– Complexity of the protocol

How far down can you go?

• Chipset families
• Distinct drivers for chipsets
• Different versions of the same driver
• Firmware (?)

Specific fingerprints

• RTS/CTS window honouring
• Association Redirection
• Duration analysis

RTS/CTS

• RTS/CTS packets used to reserve
media for large enough packets.

RTS/CTS

RTS/CTS

RTS/CTS

RTS/CTS

RTS/CTS

RTS/CTS

RTS/CTS

How many implementations
use this?

Nope.
Nope
Yes!

Most?
A few?
None?

(under normal conditions)

RTS/CTS

• If they didn’t bother to implement it, they
care if other people have?

RTS/CTS

• Though code was written to analyze
packet dumps, results were not
deterministic enough to be useful.

• Getting such a high resolution
clock/timestamp very diffcult.

Association Redirection

• Active fingerprinting technique.
• High resolution.
• Mind-numbingly boring to automate.

Association Redirection

• Specified in standard: pg 376

Quick Overview

Important 802.11 fields:
Src, Dst, BSSID

Normal 802.11 Association

Association Redirection

UnsuccessfulSuccessful

http://localhost:8888/Defcon/table1/

So what weird things happen?

• Cards de-auth flood null address
(broadcom)

• Cards think they are on both networks?
(centrino)

• Other less dramatic hijinks.

Deauth-Flood example
auth-reply

Deauth-Flood example
assoc-request

Deauth-Flood example
assoc-reply

Deuath-Flood
starts

Association Redirection redux

• If 1 weird standards quirk is good 3
must be better!
– Instead of just source mangle as many

things as possible: src, bssid, both

Table2 here

Assocation Redir redux

• If 3 standards quirks work OK, why not
9?

• Two more tables

Tables 3 and 4 here

Association Redirection
summary

• very possible to remotely version
chipset

• can’t really distinguish different drivers
• - active technique, requires you to

transmit packets.

Duration analysis

• Totally passive
• Very accurate
• Easy to automate
• Only basic statistical techniques used.

What is a duration?

What influences duration
values.

• Rate (.11b, .11g)
• Short slot time (g only)
• Short pre amble

Example atheros fingerprint
Well behaved atheros card:

CTS: 0
pwrmgmt: 1
frag: 0
order: 0

<0 0> Duration((314)) //assoc request
<0 4> Duration((0) (314)) //probe request
<0 11> Duration((314)) //authentication
<2 0> Duration((162) (0)) //data
<2 4> Duration((162)) //null function data

Example prism fingerprint
poorly behaved prism card:

CTS: 0
pwrmgmt: 1
frag: 0
order: 0

<0 0> Duration((258)) //assoc req
<0 4> Duration((0)) //probe req
<0 11> Duration((53389)) //auth
<0 12> Duration((258) (314)) //de-auth
<2 0> Duration((213) (0) (223)) //data
<2 4> Duration((37554)) //null-func

Simple example

• Duration match 2 prints here

Simple example cont.

Real life example (centrino)

Unknown Ralink example
tcpdump -i rausb0 -s 0 -w unknown.pcap

So how’s it work?
--MagicStats Duration summarry---
Total number of unique durations: 12
Total volume: 95

dur times_seen prob weight
0, 25, 0.2632, 3.8000
117, 8, 0.0842, 11.8750
127, 2, 0.0211, 47.5000
152, 1, 0.0105, 95.0000
162, 15, 0.1579, 6.3333
213, 5, 0.0526, 19.0000
223, 1, 0.0105, 95.0000
248, 2, 0.0211, 47.5000
258, 6, 0.0632, 15.8333
314, 28, 0.2947, 3.3929
37554, 1, 0.0105, 95.0000
53389, 1, 0.0105, 95.0000

Atheros print
CTS: 0
pwrmgmt: 1
frag: 0
order: 0

<0 0> Duration((314))
<0 4> Duration((0) (314))
<0 11> Duration((314))

<2 0> Duration((162) (0))
<2 4> Duration((162))

So how’s it work?

• Compute fingerprint across input pcap.
• Fuzzilly compare it to all known

fingerprints.
– For every matching duration in comparison print,

add points proportional to weight for that duration.
– Bonus points for matching type, subtype, and

duration all at once.

Fuzzy compare

• For every matching duration in
comparison print, add points
proportional to weight for that duration.

• Bonus points for matching type,
subtype, and duration all at once.

Also tracks a few other flags
Flag value ratio prob weight
CTS: 1 0/12 0.0000 inf
CTS: 0 12/12 1.0000 1.0000

PwrMgmt: 1 8/12 0.6667 1.5000
PwrMgmt: 0 4/12 0.3333 3.0000

frag: 1 0/12 0.0000 inf
frag: 0 12/12 1.0000 1.0000

order: 1 0/12 0.0000 inf
order: 0 12/12 1.0000 1.0000

how accurate is it?

• When run across my own set of training
data, the following results apply:

• B-only (0x0021 flags, lexie)
– 26 times better than random

• mixed-BG (0x0401/0x0001 flags)
– 18 times better than random

Finding and exploiting vulns in
drivers.

Ways to find bugs?

• Static auditing
• Fuzzing

Things to think about

• Fuzzing can be frustrating
– A bug could be triggered by something 8

packet chains ago
– Hard to track down in ring0

fuzz-e

fuzz-e
(johnycsh@diz:fuzz-e)$./fuzz-e -R -A -P ath0 -n 500
-r rt2570 -i rausb0 -c 11 -D ./dest-addys.txt -w u20000
-s 00:07:0E:B9:74:BB -b 00:07:0E:B9:74:BB -E log.txt

-R random delays
-A autonomous mode (don’t stop)
-P passive interface to sniff on
-n 500 send 500 packets per cycle
-r rt2570 driver to inject with
-i rausb0 inject on rausb0
-c 11 set channel to 11
-D dest-addys specify list of victims
-w u20000 wait 200000 usecs (max)
-s source address of packets
-b bssid of packets
-E log events to log.txt

Wi-fuzz

• A little different than fuzz-e
• Relies on long series of packet chains
• Newer code exercises decryption and

decompression code
• Original packet input is defined by a psuedi

rules file
– New packet types can be added quickly
– Can be extended to more than just wifi link layer

Shellcode

• Most often a direct return shell is not
possible.

• Shellcode executes at kernel level, most
generic overflow protection tools cannot
stop it.
– No matter what sales reps say…

• Bots or other malicious shellcode have
to be designed.

DEMOS
(there are a few)

	Device Drivers:Don’t build a house on a shaky foundation
	Overview
	Problems?
	Problems (cont…)
	802.11
	Why so complicated?
	Why so complicated
	Can we fix it
	Why is this interesting?
	Ethernet
	802.11
	Not done yet..
	More features!
	What do you get when you remove the extras?
	Fingerprinting 802.11
	Fingerprinting 802.11
	How far down can you go?
	Specific fingerprints
	RTS/CTS
	RTS/CTS
	RTS/CTS
	RTS/CTS
	RTS/CTS
	RTS/CTS
	RTS/CTS
	RTS/CTS
	How many implementations use this?
	RTS/CTS
	RTS/CTS
	Association Redirection
	Association Redirection
	Quick Overview
	
	Normal 802.11 Association
	Association Redirection
	So what weird things happen?
	Deauth-Flood example auth-reply
	Deauth-Flood example assoc-request
	Deauth-Flood example assoc-reply
	Deuath-Flood starts
	Association Redirection redux
	Table2 here
	Assocation Redir redux
	Tables 3 and 4 here
	Association Redirection summary
	Duration analysis
	What is a duration?
	What influences duration values.
	Example atheros fingerprint
	Example prism fingerprint
	Simple example
	Simple example cont.
	Real life example (centrino)
	Unknown Ralink example
	So how’s it work?
	So how’s it work?
	Fuzzy compare
	Also tracks a few other flags
	how accurate is it?
	Ways to find bugs?
	Things to think about
	fuzz-e
	fuzz-e
	Wi-fuzz
	Shellcode
	

