# **Device Drivers:**

Don't build a house on a shaky foundation

johnny cache, researcher david maynor, SecureWorks

# Overview

- Problems
- Nifty Fingerprinting Stuff
- Finding and Exploiting Vulns
- Shellcode Design
- DEMOS!!!!!!

# Problems?

- Speed to market is so important.
- Some things don't get tested properly
- New hardware and committee designed protocols are especially susceptible.

# Problems (cont...)

- Although what follows is mostly focused on 802.11a/b/g the lessons learned can be applied to lots of things
  - Bluetooth
  - New 802.11 specs
  - Wireless data (EDGE, EV-DO, HSDPA)

# 802.11

- Why is it so complicated
- Does it have to be
- Can we fix it?
- Consequence's of complexity:
  - Fingerprinting 802.11 implementations
  - Exploiting device drivers

# Why so complicated?

"Fear leads to anger. Anger leads to hate. Hate leads to protocols designed by committe." --warlord (?)

# Why so complicated

- Partly to ambitious, partly attempting to deal with legitimate problems.
- -hidden nodes
- -unreliable links
- other networks on same channel

# Can we fix it

- Yes, all it costs is standards compliance.
- Ignore management frames
- Ignore (some?) control frames
- Remove extra's (more on these later),

# Why is this interesting?

- Complexity is a hacker's best friend.
- If its not complex theres no room for bugs. No bugs means no fun.
- 802.11 is not lacking in complexity.

# Ethernet

3 fields: src, dst, type.

# 802.11

- Version
- Type
- Subtype
- 8 flags.

# Not done yet..

- Positive acknowledgement
- 11 management frames
- 6 control frames
- ..lots of subtypes for each.
- ..various encryption fields (IV, MIC/ICV, etc)

# More features!

- Ad-Hoc
- Power savings
- 2 types of MAC (PCF vs DCF)
- .11e QoS
- Geo-locating proposed? WTH does 'media access control' have to do with geo-locating

What do you get when you remove the extras?

### Nintendo DS



No Wi-Fi certification Nowhere near 802.11 compliant Ignores de-auth/disassociates Possibly ignores control packets Works great! (probably doesn't roam very well)

# Fingerprinting 802.11

### Why bother

- Target exploits
- WIDS can monitor users' chipset, driver.
- Possibly refine OS fingerprints

# Fingerprinting 802.11

- Why is this cool
  - No other link layer protocol fingerprints that I know of
- Why is this possible?
  - Complexity of the protocol

# How far down can you go?

- Chipset families
- Distinct drivers for chipsets
- Different versions of the same driver
- Firmware (?)

# Specific fingerprints

- RTS/CTS window honouring
- Association Redirection
- Duration analysis

# RTS/CTS

 RTS/CTS packets used to reserve media for large enough packets.















# How many implementations use this?

| Most?  | Nope. |
|--------|-------|
| A few? | Nope  |
| None?  | Yes!  |

(under normal conditions)

# RTS/CTS

If they didn't bother to implement it, they care if other people have?

# RTS/CTS

- Though code was written to analyze packet dumps, results were not deterministic enough to be useful.
- Getting such a high resolution clock/timestamp very diffcult.

# **Association Redirection**

- Active fingerprinting technique.
- High resolution.
- Mind-numbingly boring to automate.



### Specified in standard: pg 376



# **Quick Overview**

### Important 802.11 fields: Src, Dst, BSSID

#### Typical 802.11 Traffic



| No. 🗸  | Time                                                  | Source                  | Destination             | rotocol | Info             |
|--------|-------------------------------------------------------|-------------------------|-------------------------|---------|------------------|
| 2      | 3 0.253433                                            | 10.0.0.100              | 10.0.0.222              | TCP     | 50300 > 50300    |
| 2      | 4 0.254762                                            | 10.0.0.100              | 10.0.0.222              | TCP     | 50300 > 50300    |
| 4      |                                                       |                         |                         |         |                  |
| ▷ Fran | ne 23 (80 byte                                        | es on wire, 80 bytes ca | aptured)                |         |                  |
| 🗢 IEE  | 802.11                                                |                         |                         |         |                  |
| Τ)     | pe/Subtype:                                           | Data (32)               |                         |         |                  |
| D Fr   | ame Control:                                          | 0x0108 (Normal)         |                         |         |                  |
| D      | uration: 258                                          |                         |                         |         |                  |
| B      | SS Id: 00:30:b                                        | od:c0:38:9a (BelkinCo_  | c0:38:9a)               |         |                  |
| S      | Source address: 00:11:95:c2:e7:8a (AlphaNet_c2:e7:8a) |                         |                         |         |                  |
| D      | estination add                                        | ress: 00:10:c6:6b:07:1  | d (Usi_6b:07:1d)        |         |                  |
| Fr     | Fragment number: 0                                    |                         |                         |         |                  |
| S      | equence numb                                          | ber: 3368               |                         |         |                  |
| Þ Logi | cal-Link Contro                                       | ol                      |                         |         |                  |
| Þ Inte | rnet Protocol,                                        | Src Addr: 10.0.0.100 (  | (10.0.0.100), Dst Addr: | 10.0.0. | 222 (10.0.0.222) |

### **Black Hat Briefings**

97

# Normal 802.11 Association

BSSID: 00:11:22:33:44:55



# **Association Redirection**



| id-num | image    | MAC/Model/Chipset                              | driver-id             | SRC                        |
|--------|----------|------------------------------------------------|-----------------------|----------------------------|
| 1      |          | 00:12:17:79:1C:B0<br>Atheros AR5212            | ar5211 <i>.</i> sys   | IGN_ASSOC_REPLY<br>123     |
| 2      |          | 00:20:A6:4C:D9:4A<br>Atheros AR5212            | ntpr11ag.sys          | IGN_ASSOC_REPLY<br>1 2 3   |
| 3      |          | 00:20:A6:4B:DD:85<br>Atheros AR5211            | (ntpr11ag.sys)        | IGN_ASSOC_REPLY<br>1 2 3   |
| 4      |          | 00:20:A6:51:EC:09<br>Atheros AR5212            | (ntpr11ag.sys)        | IGN_ASSOC_REPLY<br>1 2 3   |
| 5      |          | 00:0A:95:F3:2F:AB<br>Broadcom BCM4318          | AppleAirport2-bcm4318 | DEAUTH_FLOOD_NULL<br>1 2 3 |
| 6      | <b>N</b> | 00:14:a5:06:8F:E6<br>BCM-4306                  | BCMWL5.sys            | DEAUTH_FLOOD_NULL<br>1 2 3 |
| 7      |          | 00:0E:35:E9:C9:5B<br>Intel PRO/Wireless 2200BG | w29n51.sys            | DUAL_NACK_DATA<br>1 2 3    |
| 8      |          | 00:13:46:E3:B4:2C<br>Ralink RA2570             | rt2500usb.sys         | IGN_ASSOC_REPLY<br>1 2 3   |
| 9      |          | 00:04:E2:80:2C:21<br>Prism 2.5                 | smc2532w.sys          | DEAUTH_TYPE_1<br>1 2 3     |
| 10     | (0       | 00:14:A4:2A:9E:58<br>BCM4318                   | bcmwl5 <i>.s</i> ys   | DEAUTH_FLOOD_NULL<br>1 2 3 |

# So what weird things happen?

- Cards de-auth flood null address (broadcom)
- Cards think they are on both networks? (centrino)
- Other less dramatic hijinks.

# Deauth-Flood example

# auth-reply

| No. + | Time     | Source            | Destination              | rotocol | Info                                   |
|-------|----------|-------------------|--------------------------|---------|----------------------------------------|
| 40    | 1.315883 | AppleCom_f3:2f:ab | Cimsys_33:44:55          | IEEE 8  | Authentication                         |
| 41    | 1.316220 |                   | AppleCom_f3:2f:ab (R     | IEEE 8  | Acknowledgement                        |
| 42    | 1.317122 | Cimsys_33:44:55   | AppleCom_f3:2f:ab        | IEEE 8  | Authentication                         |
| 43    | 1.317466 |                   | Cimsys_33:44:55 (RA)     | IEEE 8  | Acknowledgement                        |
| 44    | 1.318342 | AppleCom_f3:2f:ab | Cimsys_33:44:55          | IEEE 8  | Association Request, SSID: "dojooffoo" |
| 45    | 1.318679 |                   | AppleCom_f3:2f:ab (R     | IEEE 8  | Acknowledgement                        |
| 46    | 1.319333 | 00:22:22:22:22:22 | AppleCom_f3:2f:ab        | IEEE 8  | Association Response                   |
| 47    | 1.319599 |                   | 00:22:22:22:22:22 (R/    | IEEE 8  | Acknowledgement                        |
| 48    | 1.319996 | AppleCom_f3:2f:ab | 00:22:22:22:22:22        | IEEE 8  | Deauthentication                       |
| 10    | 1 301000 | AppleCom f3:2fish | <u>00.33.32.32.33.33</u> | TEEE Q  | Desuthentication                       |

Frame 42 (30 bytes on wire, 30 bytes captured)

▽ IEEE 802.11

Type/Subtype: Authentication (11)

Frame Control: 0x00B0 (Normal)

Duration: 314

Destination address: 00:0a:95:f3:2f:ab (AppleCom\_f3:2f:ab)

Source address: 00:11:22:33:44:55 (Cimsys\_33:44:55)

BSS Id: 00:11:22:33:44:55 (Cimsys\_33:44:55)

Fragment number: 0

Sequence number: 108

# **Deauth-Flood example**

### assoc-request

| No. 🗸 | Time     | Source            | Destination           | 'rotocol | Info                                   |
|-------|----------|-------------------|-----------------------|----------|----------------------------------------|
| 40    | 1.315883 | AppleCom_f3:2f:ab | Cimsys_33:44:55       | IEEE 8   | Authentication                         |
| 41    | 1.316220 |                   | AppleCom_f3:2f:ab (R  | IEEE 8   | Acknowledgement                        |
| 42    | 1.317122 | Cimsys_33:44:55   | AppleCom_f3:2f:ab     | IEEE 8   | Authentication                         |
| 43    | 1.317466 |                   | Cimsys_33:44:55 (RA)  | IEEE 8   | Acknowledgement                        |
| 44    | 1.318342 | AppleCom_f3:2f:ab | Cimsys_33:44:55       | IEEE 8   | Association Request, SSID: "dojooffoo" |
| 45    | 1.318679 |                   | AppleCom_f3:2f:ab (R  | IEEE 8   | Acknowledgement                        |
| 46    | 1.319333 | 00:22:22:22:22:22 | AppleCom_f3:2f:ab     | IEEE 8   | Association Response                   |
| 47    | 1.319599 |                   | 00:22:22:22:22:22 (R/ | IEEE 8   | Acknowledgement                        |
| 48    | 1.319996 | AppleCom_f3:2f:ab | 00:22:22:22:22:22     | IEEE 8   | Deauthentication                       |
| 10    | 1 301000 | AppleCom f3:2frah | <u>••••</u>           | TEEE Q   | Deauthentication                       |

∀ IEEE 802.11

•

Type/Subtype: Association Request (0)

Frame Control: 0x0000 (Normal)

Duration: 314

Destination address: 00:11:22:33:44:55 (Cimsys\_33:44:55)

Source address: 00:0a:95:f3:2f:ab (AppleCom\_f3:2f:ab)

BSS Id: 00:11:22:33:44:55 (Cimsys\_33:44:55)

Fragment number: 0

Sequence number: 46

IEEE 802.11 wireless LAN management frame

# **Deauth-Flood example**

## assoc-reply

| No. + | Time     | Source            | Destination          | 'rotocol | Info                                   |
|-------|----------|-------------------|----------------------|----------|----------------------------------------|
| 40    | 1.315883 | AppleCom_f3:2f:ab | Cimsys_33:44:55      | IEEE 8   | Authentication                         |
| 41    | 1.316220 |                   | AppleCom_f3:2f:ab (R | IEEE 8   | Acknowledgement                        |
| 42    | 1.317122 | Cimsys_33:44:55   | AppleCom_f3:2f:ab    | IEEE 8   | Authentication                         |
| 43    | 1.317466 |                   | Cimsys_33:44:55 (RA) | IEEE 8   | Acknowledgement                        |
| 44    | 1.318342 | AppleCom_f3:2f:ab | Cimsys_33:44:55      | IEEE 8   | Association Request, SSID: "dojooffoo" |
| 45    | 1.318679 |                   | AppleCom_f3:2f:ab (R | IEEE 8   | Acknowledgement                        |
| 46    | 1.319333 | 00:22:22:22:22:22 | AppleCom_f3:2f:ab    | IEEE 8   | Association Response                   |
| 47    | 1.319599 |                   | 00:22:22:22:22 (R/   | IEEE 8   | Acknowledgement                        |
| 48    | 1.319996 | AppleCom_f3:2f:ab | 00:22:22:22:22:22    | IEEE 8   | Deauthentication                       |
| 10    | 1 301000 | AppleCom f3:0frah | <u>••••</u>          | TEEE Q   | Deauthentication                       |

∀ IEEE 802.11

Type/Subtype: Association Response (1)

Frame Control: 0x0010 (Normal)

Duration: 258

Destination address: 00:0a:95:f3:2f:ab (AppleCom\_f3:2f:ab)

Source address: 00:22:22:22:22:22 (00:22:22:22:22)

BSS Id: 00:11:22:33:44:55 (Cimsys\_33:44:55)

Fragment number: 0

Sequence number: 109

IEEE 802.11 wireless LAN management frame

# **Deuath-Flood**

## starts

| No. + | Time     | Source            | Destination          | rotocol | Info                                   |
|-------|----------|-------------------|----------------------|---------|----------------------------------------|
| 40    | 1.315883 | AppleCom_f3:2f:ab | Cimsys_33:44:55      | IEEE 8  | Authentication                         |
| 41    | 1.316220 |                   | AppleCom_f3:2f:ab (R | IEEE 8  | Acknowledgement                        |
| 42    | 1.317122 | Cimsys_33:44:55   | AppleCom_f3:2f:ab    | IEEE 8  | Authentication                         |
| 43    | 1.317466 |                   | Cimsys_33:44:55 (RA) | IEEE 8  | Acknowledgement                        |
| 44    | 1.318342 | AppleCom_f3:2f:ab | Cimsys_33:44:55      | IEEE 8  | Association Request, SSID: "dojooffoo" |
| 45    | 1.318679 |                   | AppleCom_f3:2f:ab (R | IEEE 8  | Acknowledgement                        |
| 46    | 1.319333 | 00:22:22:22:22:22 | AppleCom_f3:2f:ab    | IEEE 8  | Association Response                   |
| 47    | 1.319599 |                   | 00:22:22:22:22 (R/   | IEEE 8  | Acknowledgement                        |
| 48    | 1.319996 | AppleCom_f3:2f:ab | 00:22:22:22:22:22    | IEEE 8  | Deauthentication                       |
| 10    | 1 301000 | AppleCom f3:3fish | <u> </u>             | TEEE 01 | Desuthentication                       |

▽ IEEE 802.11

Type/Subtype: Deauthentication (12)

Frame Control: 0x00C0 (Normal)

Duration: 314

Destination address: 00:22:22:22:22:22 (00:22:22:22:22)

Source address: 00:0a:95:f3:2f:ab (AppleCom\_f3:2f:ab)

BSS Id: 00:00:00:00:00 (00:00:00\_00:00:00)

Fragment number: 0

Sequence number: 47

IEEE 802.11 wireless LAN management frame

# Association Redirection redux

- If 1 weird standards quirk is good 3 must be better!
  - Instead of just source mangle as many things as possible: src, bssid, both

# Table2 here

# Assocation Redir redux

- If 3 standards quirks work OK, why not 9?
- Two more tables

# Tables 3 and 4 here

# Association Redirection summary

- very possible to remotely version chipset
- can't really distinguish different drivers
- active technique, requires you to transmit packets.

# **Duration analysis**

- Totally passive
- Very accurate
- Easy to automate
- Only basic statistical techniques used.

# What is a duration?

|     | o                                                           | Time             | HW-src                | HW-dst          | rotocol | Info |
|-----|-------------------------------------------------------------|------------------|-----------------------|-----------------|---------|------|
| Г   | 1                                                           | 21:07:18.620     | 00:0a:95:f3:2f:ab     | ff:ff:ff:ff:ff  | IEEE 8  | Data |
| L   |                                                             | 2 21:07:21.388   | 00:0a:95:f3:2f:ab     | ff:ff:ff:ff:ff  | IEEE 8  | Data |
|     | -                                                           | 3 21:07:23.428   | 00:0a:95:f3:2f:ab     | ff:ff:ff:ff:ff  | IEEE 8  | Data |
| L   | 4                                                           | 21:07:23.429     | 00:0a:95:f3:2f:ab     | ff:ff:ff:ff:ff  | IEEE 8  | Data |
| Í   |                                                             |                  |                       |                 |         | •    |
| ₽   | Fran                                                        | ne 3 (68 bytes d | on wire, 68 bytes cap | tured)          |         |      |
| " ⊽ | IEEE                                                        | 802.11           | , , ,                 | ,               |         |      |
|     | T)                                                          | /pe/Subtype: Da  | ita (32)              |                 |         |      |
|     | ⊳ Fr                                                        | ame Control: 0x  | (4108 (Normal)        |                 |         |      |
|     | D                                                           | uration: 258     |                       |                 |         |      |
| Г   | B                                                           | SS Id: 00:30:bd: | c0:38:9a (00:30:bd:c0 | ):38:9a)        |         |      |
|     | S                                                           | ource address: 0 | 0:0a:95:f3:2f:ab (00: | 0a:95:f3:2f:ab) |         |      |
|     | Destination address: ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff |                  |                       |                 |         |      |
|     | Fragment number: 0                                          |                  |                       |                 |         |      |
|     | Se                                                          | equence number   | 1286                  |                 |         |      |
|     | ⊳ w                                                         | 'FP parameters   |                       |                 |         |      |

# What influences duration values.

- Rate (.11b, .11g)
- Short slot time (g only)
- Short pre amble

# Example atheros fingerprint

Well behaved atheros card:

CTS: 0 pwrmgmt: 1 frag: 0 order: 0

<0 0> Duration( (314) )

- <0 4> Duration( (0) (314) )
- <0 11> Duration( (314) )
- <2 0> Duration( (162) (0) ) //data
- <2 4> Duration((162))

//assoc request
//probe request
//authentication
//data
//null function data

# Example prism fingerprint

poorly behaved prism card:

CTS: 0 pwrmgmt: 1 frag: 0 order: 0

<0 0> Duration( (258) )

- <0 4> Duration((0))
- <0 11> Duration( (53389) )
- <0 12> Duration( (258) (314) )
- <2 0> Duration( (213) (0) (223) )
- <2 4> Duration((37554))

//assoc req
//probe req
//auth
//de-auth
//data
//null-func

# Simple example

### Duration match 2 prints here





# Real life example (centrino)



# Unknown Ralink example

tcpdump -i rausb0 -s 0 -w unknown.pcap



# So how's it work?

--MagicStats Duration summarry---Total number of unique durations: 12 Total volume: 95

| dur   | times_seen | prob    | weight  |
|-------|------------|---------|---------|
| 0,    | 25,        | 0.2632, | 3.8000  |
| 117,  | 8,         | 0.0842, | 11.8750 |
| 127,  | 2,         | 0.0211, | 47.5000 |
| 152,  | 1,         | 0.0105, | 95.0000 |
| 162,  | 15,        | 0.1579, | 6.3333  |
| 213,  | 5,         | 0.0526, | 19.0000 |
| 223,  | 1,         | 0.0105, | 95.0000 |
| 248,  | 2,         | 0.0211, | 47.5000 |
| 258,  | 6,         | 0.0632, | 15.8333 |
| 314,  | 28,        | 0.2947, | 3.3929  |
| 37554 | l, 1,      | 0.0105, | 95.0000 |
| 53389 | ), 1,      | 0.0105, | 95.0000 |

### Atheros print

| CTS: 0   |                          |   |
|----------|--------------------------|---|
| pwrmgm   | nt: 1                    |   |
| frag: 0  |                          |   |
| order: 0 |                          |   |
|          |                          |   |
| <0 0>    | Duration((314))          |   |
| <0 4>    | Duration( (0) (314)      | ) |
| <0 11>   | Duration((314))          |   |
|          |                          |   |
| <2 0>    | Duration $((162))$ $(0)$ | ) |

<2 4> Duration( (162) (0) )

# So how's it work?

- Compute fingerprint across input pcap.
- Fuzzilly compare it to all known fingerprints.
  - For every matching duration in comparison print, add points proportional to weight for that duration.
  - Bonus points for matching type, subtype, and duration all at once.

# Fuzzy compare

- For every matching duration in comparison print, add points proportional to weight for that duration.
- Bonus points for matching type, subtype, and duration all at once.

# Also tracks a few other flags

| Flag     | value  | ratio  | prob   | weight |
|----------|--------|--------|--------|--------|
| CTS:     | 1      | 0/12   | 0.0000 | inf    |
| CTS:     | 0      | 12/12  | 1.0000 | 1.0000 |
| PwrMgmt: | 1      | 8/12   | 0.6667 | 1.5000 |
| PwrMgmt: | 0      | 4/12   | 0.3333 | 3.0000 |
| frag:    | 1      | 0/12   | 0.0000 | inf    |
| frag:    | 0      | 12/12  | 1.0000 | 1.0000 |
| order:   | 1      | 0/12   | 0.0000 | inf    |
| order:   | 0      | 12/12  | 1.0000 | 1.0000 |
| Black H  | lat Bi | riefin | gs     |        |

# how accurate is it?

- When run across my own set of training data, the following results apply:
- B-only (0x0021 flags, lexie)
  - 26 times better than random
- mixed-BG (0x0401/0x0001 flags)
  - 18 times better than random

# Finding and exploiting vulns in drivers.

# Ways to find bugs?

- Static auditing
- Fuzzing

# Things to think about

### Fuzzing can be frustrating

- A bug could be triggered by something 8 packet chains ago
- Hard to track down in ring0



## fuzz-e

(johnycsh@diz:fuzz-e)\$./fuzz-e-R-A-Path0-n500 -rrt2570-irausb0-c11-D./dest-addys.txt -wu20000 -s 00:07:0E:B9:74:BB-b 00:07:0E:B9:74:BB-E log.txt

| -R            | random delays                 |
|---------------|-------------------------------|
| -A            | autonomous mode (don't stop)  |
| -P            | passive interface to sniff on |
| -n 500        | send 500 packets per cycle    |
| -r rt2570     | driver to inject with         |
| -i rausb0     | inject on rausb0              |
| -c 11         | set channel to 11             |
| -D dest-addys | specify list of victims       |
| -w u20000     | wait 200000 usecs (max)       |
| <b>-</b> S    | source address of packets     |
| -b            | bssid of packets              |
| -E            | log events to log.txt         |

# Wi-fuzz

- A little different than fuzz-e
- Relies on long series of packet chains
- Newer code exercises decryption and decompression code
- Original packet input is defined by a psuedi rules file
  - New packet types can be added quickly
  - Can be extended to more than just wifi link layer

# Shellcode

- Most often a direct return shell is not possible.
- Shellcode executes at kernel level, most generic overflow protection tools cannot stop it.
  - No matter what sales reps say...
- Bots or other malicious shellcode have to be designed.

# **DEMOS** (there are a few)