Hacking MANET

Building and Breaking Wireless Peering Networks

Riley "Caezar" Eller

Why or Why Not MANET?

Ideals

- Allows seamless roaming
- Works when infrastructure breaks
- Routing does not require administration
- Functional in hostile environments
- Farther from the Shannon curve due to lower typical transmission distance

Problems

- Network scalability
- Effective, voluntary security

Mobile Networking

- People move a lot
- Fast dynamic routing is a hard problem
- Infrastructure solutions are much easier
- Hybrid infrastructure (or "fixed mesh") reduces the problem somewhat
- People want a real solution

Here Comes the Science

- Major types of network routing protocols
 - Link State
 - Dyjkstra SPF algorithm
 - Example: OSPF
 - Distance-Vector
 - Bellman-Ford algorithm
 - Example: RIP
 - Policy Based
 - Policies override core DV or LS style routing algorithms
 - Example: BGP

Distance-Vector Routing

Values

- Each device has a unique address
- Applications don't distinguish transports
- Robust during partial failure
- Perceived to be much more natural by users
- Allows for a high mobility index
- Challenges
 - High processing complexity
 - High message complexity

Link State Routing

Values

- Low processing and message complexity
- Comparatively inexpensive

Challenges

- Each interface has a unique address
- Applications may require transport specific information, such as locally bound IP address
- Exceptionally unnatural to users
- Demands a low mobility index

Godzilla Versus Dyjkstra

- Places where LSR (or equivalents) wins

 The Internet (except as noted below)

 Places where DVR (or equivalents) wins

 Mesh networks
 - Interior gateway routing
 - Border gateway routing
 - Games and AI

Infrastructure-Mode Wi-Fi

Immobile

- Wired equivalency tether
- Must sacrifice bandwidth exponentially to increase radius linearly

Inefficient

Peer to peer messages eat double bandwidth
Close security model requires user intervention

Fixed Mesh Wi-Fi

- Marginal improvement at best
 - Client devices still tethered
 - Same scalability problems among access points
 - Reliable fail-over only by sacrificing footprint
 - Does nothing to improve disaster scenario
 - Worse spectrum allocation
- Lagging standard not due until 2008

What We Really Want

Peer to peer network

- Excellent security
- VOIP and 3GPP reliable delivery
- Automatic discovery
- Maximum mobility
- User defined network policy

Understanding the Link Layer

- Understanding mesh links
 - Nodes beacon to provide carrier sense
 - Discover peers automatically
 - Infer link quality from beacon packet reception
 - Acknowledge high quality beacons
 - Translate link quality into link metric, e.g.:
 - For 802.11b, 99% beacon reception implies about 1200 millisecond expected transmission delay
 - 40% reception implies nearly infinite delay

Attacking the Link Layer

- Eavesdropping
 - Discover participants and topology
 - Retrieve public keys (identity tracking)
 - Content interception
- Sybil Attack
 - Greeting flood
 - Storage or processing denial of service

Attacking the Link Layer

- Greeting and acknowledgement replay

 Causes link quality overestimate
 - Causes degenerate routing
 - Increases processing and storage requirements
 - Wormhole attack
 - Previous work here by S. Swami and others
 - Will discuss in more detail as a routing layer attack

Attacking the Link Layer

 Unauthorized access - Bandwidth reduction Perimeter intrusion Selective jamming - Freeze the Wi-Fi MAC layer - Underestimate link quality Isolate and conquer

Securing the Link Layer

- Link Cryptography
 DH/DSA key exchange
 - Gives clear cryptographic session definition
 - Prone to computational denial of service attacks
 - -Work tokens
 - Defend against DOS
 - Leverages desire to join against computation requirements

Securing the Link Layer

- Link Cryptography (continued)
 Signed broadcasts
 - Exceptional computational cost
 - Prevents wormholes and other forgery attacks
 - Certified identity
 - Translates node identity into comprehensible string
 - Allows user control of policy
 - Impedes unauthorized access

Securing the Link Layer

- Other Techniques

 Jittered timers
 - Greatly reduces risk of sniping
 - Makes selective jamming very difficult
 - Transient MAC address
 - Avoid manufacturer profiling
 - Cycle periodically to throw off listeners

Avenues for Future Research

 Acknowledgement of hidden nodes - Destroy two-hop topology graph Ubiquitous acknowledgement. - Desynchronize link quality estimation Ideal denial of service to perfect links - Like a rushing attack, but "from the future" rather than just "faster than allowed"

Understanding the Routing Layer

- Routing is a geometric problem
 - Link quality is driven by signal to noise ratio
 - Signal decreases with the square of distance
- Example
 - $-1^{2}+2^{2} < 3^{2}$; thus
 - AB + BC < AC; thus
 - A should route through B to reach C

Understanding the Routing Layer

- Understanding mesh routes
 - Advertisement based, e.g.:
 - Node R hears about node O through node P
 - "Receiver hears about Origin through nearby Peer"
 - Shorthand [R: P->O]
 - Requires temporal quality metric, e.g.:
 - Node R expects a message through P to take 3500 milliseconds
 - Shorthand [R: P = 3500]

Understanding the Routing Layer

- Understanding mesh routes (continued)
 Metric sums over multiple hops, e.g.:
 - [P: O = 3500]
 - [R: O = 3000]
 - [R: P->O = 3500]
 - R->O = 6500
 - Algorithms need help to avoid routing loops
 - Must never accept older or slower information
 - Must track edition numbers to deal with asynchronicity

Attacking the Routing Layer

Refusal to participate Black hole

- Drop all data packets
- Very easy to detect
- -Gray hole
 - Drop some data packets
 - Discoverability proportional to packet drop ratio

Attacking the Routing Layer

Underestimating distance

- Wormhole
 - Requires sideband packet forwarding
 - Absorbs all traffic within (H-1)/2 hops radius
- Invariant violation
 - Causes routing loops which may become packet storms

Rushing attacks

- Exploits "First past the post" duplicate removal algorithm
- Example: DNS response spoofing

Attacking the Routing Layer

Invisible "Million Man March"

 Sybil attack on steroids
 Flattens scaling topology
 Destroys local routing efficiency

Defending the Routing Layer

Trust-based link selection

- Assume minimal trust of each peer initially
- Increase trust slowly, decrease rapidly
- Apply trust multiplier to advertised link cost
- Contains and localizes damage by harming reputation of naïve intermediaries

Defending the Routing Layer

- Signed control messages
 - Computationally expensive
 - Eliminates rushing and wormhole attacks
- End-to-end validity probe
 - Augment trust metrics with cryptographically secure data or control message
 - Makes Sybil attacks expensive since identities are periodically required to respond

Conclusions

- With MANET we can have...
 - Discovery
 - Identity
 - Quality
 - Efficiency
- But first we need...
 - Scalable routing algorithm
 - Hardware cryptography
 - Fixes for 802.11 Ad Hoc

Going Forward

What you can do to hurry the future

Seek out and play with emerging protocols
Develop P2P phone applications
Demand hardware crypto on small devices
Use Thin-MAC wireless cards
Hack It!