
IPv6 / ICMPv6
Covert Channels

R.P. Murphy, CISSP, CEH

Overview
• IPv4
• IPv6
• RFC’s and IPv6/ICMPv6 fields
• Definition of a Covert Channel
• Assumptions
• Test Network
• v00d00N3t

– Development
– Capabilities
– Testing
– Results

• Questions

IPv4
• IPv4

– NAT
• Limited address space

– ~ 2009-2016
• Push to move to IPv6

– DoD mandated by 2008
• Similar covert channel capabilities

IPv6 (IPng)
• Proposed standard NOV 17, 1994
• IPv6 is the answer to IPv4
• Huge address space
• Security by numbers
• Deployment Issues

– Legacy equipment
– Software modifications
– Each device is now pingable

RFC IPv6 / ICMPv6
• RFC2119 March 1997

– Key words for use in RFCs to Indicate Requirement
Levels

• MUST This word, or the terms "REQUIRED" or "SHALL",
mean that the definition is an absolute requirement of the
specification.

• Security Considerations These terms are frequently used to
specify behavior with security implications. The effects on
security of not implementing a MUST or SHOULD, or doing
something the specification says MUST NOT or SHOULD
NOT be done may be very subtle. Document authors should
take the time to elaborate the security implications of not
following recommendations or requirements as most
implementers will not have had the benefit of the
experience and discussion that produced the specification.

RFC IPv6 / ICMPv6
• RFC2460 December 1998

– IPv6 Specification
• Traffic Class bits in a received packet MUST

NOT be assumed as the same value sent by
the source

• RFC3697 March 2004
– IPv6 Flow Label Specification

• The Flow Label value set by the source
MUST be delivered unchanged to the
destination node(s).

RFC IPv6 / ICMPv6
• RFC4443 March 2006

– Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6)
Specification

• ICMPv6 (ICMP for IPv6) is used by IPv6 nodes to
report errors encountered in processing packets, and
to perform other internet-layer functions, such as
diagnostics (ICMPv6 "ping"). ICMPv6 is an integral
part of IPv6, and the base protocol (all the messages
and behavior required by this specification) MUST be
fully implemented by every IPv6 node.

• A covert channel is a mechanism that can
be used to transfer information from one
user of a system to another using means
not intended for this purpose by the
system developers.

Ref: NRL Technical Memorandum 5540:062A, 12 Feb 1996: Handbook
for the Computer Security Certification of Trusted Systems

• A covert channel is any communication
channel that can be exploited by a process
to transfer information in a manner that
violates the system's security policy.

Ref: DoD Trusted Computer System Evaluation Criteria (TCSEC)
December 1985

Covert Channel Defined

Assumptions
• ICMPv6 traffic will be allowed

(RFC4443)
• Control at both ends
• Take advantage of Dual-Stack to use

Tunnel Brokers for test-bed
• Still maturing IPv6 protection

technology (FW, IDS, IPS)

• Two networks designed and tested
– Reflashed SOHO Linksys

• IPv6 over IPv4 Tunneling
– ‘Slick’ IPv6

• Controlled

Test Networks

Test Networks
• Linksys WRT54g

– Firmware OpenWRT
– Added IPv6 packages
– IPv6 network in the home
– 6 over 4 tunneling
– Tunnel Broker

• ‘Slick’ IPv6 Network
– Linux Router

• Fedora Core 4
• Zebra w/BGPv6
• Router Advertisements (/etc/radv.conf)

– Linux Clients
• Fedora Core 4

• Windows Router
– Server 2003 Enterprise
– RIPv6
– Router Advertisements

• netsh interface ipv6 > set interface *

Test Networks

Test Networks
• Cisco Routers

– 2650 (3)
• C2600-js-mz.122_8_T5.STB.5

– 2621XM/2610
• C2600-ik9o3s3-mz.123-15b.bin

• IRP RIPv6
• ERP BGPv6

• It’s a PoC
• Written in C
• Creates the entire packet starting

with Ethernet Layer
• Designed to subvert casual local

traffic analysis
• Manipulate the IPv6 and ICMPv6

layers
• Does not cater to IPv4 AND IPv6

v00d00N3t Development

• Uses standard C libraries not USAGI
• Development system was updated

weekly (kernel included)
• Test systems were updated

periodically
• Test runs on FC4 and FC5

v00d00N3t Development

The Socket
void sock_init()
{

sock = socket(PF_PACKET,
SOCK_RAW, htons(ETH_P_ALL));

}

Random MAC Address
void rnd_MAC()
{

read(dev_urandom, rand_mac, 6);
rand_mac[0] = 0;
snprintf(secondhalf, 64,
“2%2.2x:%2.2xff:fe%2.2x:%2.2x%2.2x”,
rand_mac[1], rand_mac[2],
rand_mac[3], rand_mac[4],
rand_mac[5]);

}

Random IPv6 Address
void rnd_IPv6()
{

char full[INET6_ADDRSTRLEN];
char half[INET6_ADDRSTRLEN];
char Ohalf[INET6_ADDRSTRLEN];
inet_pton(AF_INET6, myaddress, full, sizeof(full));
memcpy(half, full, 8);
memset(half + 8, 0, sizeof(half));
inet_ntop(AF_INET6, half, Ohalf, sizeof(Ohalf));
int x = strlen(Ohalf);
memcpy(Ohalf + (x - 1), secondhalf, sizeof(half));
inet_pton(AF_INET6, Ohalf, full, sizeof(full));
inet_ntop(AF_INET6, full, my_rnd_ip_addr,
sizeof(my_rnd_ip_addr));

}

Start Building
memset (packet, 0, 4096);
eth = (struct ether_header*) packet;
ip6 = (struct ip6_hdr*)(eth + 1);
icmp6 = (struct icmp6_hdr*)(ip6 + 1);
memcpy(eth->ether_dhost, gate_mac, ETH_ALEN);
memcpy(eth->ether_shost, rand_mac, ETH_ALEN);
eth->ether_type = htons(ETHERTYPE_IPV6);
inet_pton(AF_INET6, my_rnd_ip_addr,

IPv6SRCADDR, sizeof(IPv6SRCADDR));
memcpy(&ip6->ip6_src, IPv6SRCADDR,

sizeof(IPv6SRCADDR));

Send
int send_packet(int sizer)
{

close(sock);
sock_init();

if (sendto(sock, packet, sizeof(struct ether_header) +
sizeof(struct ip6_hdr) + sizeof(struct icmp6_hdr) + sizer, 0,
(struct sockaddr *)&sa, sizeof(sa)) < 0)
{

perror("There was a problem sending your packet");
exit(-1);

}
sizer = 0;

}

• Flags, Flags, and more Flags…
– d Destination IPv6 address
– r Receive mode
– k Keyboard entry mode
– f Send a file
– i Interface identification
– g Gateway MAC address
– b Throttle by bytes (per packet)
– t Throttle by time (1 second intervals)
– x 4 digit PIN for send and receive
– h Help menu

v00d00N3t Capabilities

• Send data (keyboard or text file)
• Obscure data (ROT-13)
• Random source MAC and IPv6

address
• Determine gateway MAC address
• Throttle by bytes and/or time
• Receive data

v00d00N3t Capabilities

• Requires 4 digit PIN for sender and
receiver, allowing multiple streams

• ICMPv6 ID tells receiver how many
bytes out of payload to read

• ICMPv6 SEQ tells receiver if it should
read the packet or not

v00d00N3t Capabilities

v00d00N3t Testing
• Validate that the packets would

survive on a ‘slick’ 6 network
• Validate that the packets would

survive in the ‘wild’, basically
uncontrolled environment

• Still not tested for survivability in an
IPv6 production environment with
IDS/IPS/FW etc…

Results
• The packets survived each test run
• Sent ‘Echo Reply’ messages with a

payload of 1440 bytes in payload with no
problem

• Larger files were broken up by the host
and sent in increments

• Sent packets with a throttle set for 1 byte
per 5 minutes

• Used 2 different Tunnel Brokers for testing

References
• http://www.ipv6style.jp/en/statistics/

address_depletion/index.shtml
• http://www.rfc-editor.org
• http://openwrt.org/
• http://wiki.openwrt.org/IPv6_howto
• https://tb.ipv6.btexact.com/
• http://www.he.net/index.html

