HUNTING FOR METAMORPHIC ENGINES

Mark Stamp & Wing Wong

August 5, 2006

Outline

- I. Metamorphic software
- II. Virus construction kits
- III. How "effective" are metamorphic engines?
 - Method used to compare two pieces of code
 - Similarity within virus families
 - Similarity between virus families
- IV. Can metamorphic viruses be detected?
 - Commercial virus scanners
 - Hidden Markov models (HMMs)
 - Similarity index
- v. Conclusion

Metamorphic Software

What is Metamorphic Software?

Software is metamorphic provided

- All copies do the same thing
- Internal structure of copies differs
- Today most software is cloned
- Why metamorphic?
 - Virus/worm avoids signature detection
 - Increase "genetic diversity" of software

Genetic Diversity of Software?

- Suppose a program has a buffer overflow
- If we clone the program
 - One attack works against every copy
 - Break once, break everywhere (BOBE)
- o If instead, we create metamorphic copies
 - Each copy still has a buffer overflow
 - Same attack does not work against every metamorphic copy
 - Break once break everywhere (BOBE) resistance
 - Sorta like genetic diversity in biology

Evolution of Virus

Viruses first appeared in the 1980s

- Fred Cohen
- Viruses must avoid signature detection
 - Virus can alter its "appearance"
- Techniques employed
 - encryption
 - polymorphic
 - metamorphic

Evolution of Virus - Encryption

Virus consists of

- decrypting module (decryptor)
- encrypted virus body
- Different encryption key
 - different virus body signature
- Weakness
 - decryptor can be detected

Evolution of Virus – *Polymorphic Viruses*

 Try to hide signature of decryptor
Can use *code emulator* to decrypt putative virus dynamically

Decrypted virus body is constant

Signature detection is possible

Evolution of Virus – *Metamorphic Viruses*

- Change virus body
- Mutation techniques:
 - permutation of subroutines
 - insertion of garbage/jump instructions
 - substitution of instructions

PART II

Virus Construction Kits

Virus Construction Kits – PS-MPC

• According to Peter Szor:

"... PS-MPC [*Phalcon/Skism Mass-Produced Code generator*] uses a generator that effectively works as a code-morphing engine..... the viruses that PS-MPC generates are not [only] polymorphic, but their decryption routines and structures change in variants..."

Virus Construction Kits – G2

 From the documentation of G2 (Second Generation virus generator):

"... different viruses may be generated from identical configuration files..."

Virus Construction Kits - NGVCK

 From the documentation of NGVCK (Next Generation Virus Creation Kit):

> "... all created viruses are completely different in structure and opcode..... impossible to catch all variants with one or more scanstrings..... nearly 100% variability of the entire code"

PART III

How Effective Are Metamorphic Engines?

Method to Compare Two Pieces of Code

Similarity within Virus Families – Test Data

o Four generators, 45 viruses

- 20 viruses by NGVCK
- 10 viruses by G2
- 10 viruses by VCL32
- 5 viruses by MPCGEN

 20 normal utility programs from the Cygwin DLL

Similarity among Virus Families

NGVCK versus other viruses

- 0% similar to G2 and MPCGEN viruses
- O 5.5% similar to VCL32 viruses (43 out of 100 comparisons have score > 0)
- O 1.2% similar to normal files (only 8 out of 400 comparisons have score > 0)

Similarity among Virus Families

O NGVCK

- Highest degree of metamorphism of kits tested
- Virtually no similarity to other viruses or normal programs

PART IV

Can Metamorphic Viruses Be Detected?

Detection with Commercial Virus Scanners

Tested three virus scanners

- eTrust version 7.0.405
- avast! antivirus version 4.7
- AVG Anti-Virus version 7.1
- Each scanned 37 files
 - 10 NGVCK viruses
 - 10 G2 viruses
 - 10 VCL32 viruses
 - 7 MPCGEN viruses

Detection with Commercial Virus Scanners

Results

- eTrust and avast! detected 17 (G2 and MPCGEN)
- AVG detected 27 viruses (G2, MPCGEN and VCL32)
- none of NGVCK viruses detected

Detection with Hidden Markov Models (HMMs)

- Use *hidden Markov models* (HMMs) to represent *statistical properties* of a set of metamorphic virus variants
 - Train the model on family of metamorphic viruses
 - Use trained model to determine whether a given program is *similar* to the viruses the HMM represents

Detection with HMMs – Theory

• A trained HMM

- maximizes the probabilities of observing the training sequence
- assigns high probabilities to sequences similar to the training sequence
- represents the "average" behavior if trained on multiple sequences
- represents an entire virus family, as opposed to individual viruses

Detection with HMMs – Data Used

o Data set

- 200 NGVCK viruses
- Comparison set
 - 40 normal exes from the Cygwin DLL
 - 25 other "non-family" viruses (G2, MPCGEN and VCL32)
- Many HMM models generated and tested

Detection with HMMs – Experimental Result

Detection with HMMs – Experimental Result

Detect some other viruses "for free"

Detection with HMMs – Experimental Result

o Summary

- All normal programs distinguished
- VCL32 viruses had scores close to NGVCK family viruses
- With proper threshold, 17 HMM models had 100% detection rate and 10 models had 0% false positive rate
- No significant difference in performance between HMMs with 3 or more hidden states

Detection with HMMs – The Trained Models

- Converged probabilities in HMM matrices may give insight into the *features* of the viruses it represents
- We observed
 - opcodes grouped into states
 - most opcodes in one states only
- What does this mean?
 - We are not sure...

Detection with Similarity Index

- Straightforward *similarity index* approach
 - To determine whether a program belongs to the NGVCK virus family, compare it to any randomly chosen NGVCK virus
 - Similarity to non-NGVCK code is small
 - Can use this fact to detect metamorphic NGVCK variants

Detection with Similarity Index

o Experiment

 compare 105 programs to selected NGVCK virus

o Results

- 100% detection, 0% false positive
- Same results using other NGVCK virus

PART V

- Metamorphic generators vary greatly
 - NGVCK has highest metamorphism (10% similarity on average)
 - Other generators far less effective (60% similarity on average)
 - Normal files **35%** similar on average
- However
 - NGVCK viruses are "too different" from other viruses and normal programs

- NGVCK viruses not detected by commercial scanners we tested
- Hidden Markov model (HMM) detects NGVCK (and other) viruses with high accuracy
- NGVCK viruses also detectable by similarity index

- All viruses tested were detectable because
 - High similarity within family and/or
 - Too different from normal programs
- Effective use of metamorphism requires both
 - A high degree of metamorphism and
 - Some similarity to other programs

References

- P. Szor, *The Art of Computer Virus Research and Defense*, Addison-Wesley, 2005
- M. Stamp, Information Security: Principles and Practice, Wiley Interscience, 2005