
FragFS: An Advanced Data
Hiding Technique

FragFS: An Advanced Data
Hiding Technique

Irby Thompson and Mathew Monroe
Defcon 14 - August 2006

OverviewOverview

History and Analysis of Data Hiding
Methods
Exploring NTFS
FragFS Implementation
Demonstration
Detection
Future Considerations
Q&A

History and Analysis of Data Hiding
Methods
Exploring NTFS
FragFS Implementation
Demonstration
Detection
Future Considerations
Q&A

Why is Data Hiding important?Why is Data Hiding important?

Do rootkits alleviate the need for data
hiding?

NO!!
Rootkits hide data on a live system
Hiding from forensic/offline analysis is much
harder

What if the rootkit is entirely memory-based?
Offline disk analysis will not find it
No reboot persistence

Some techniques rely on covert, persistent
storage

“The patient hacker”

Do rootkits alleviate the need for data
hiding?

NO!!
Rootkits hide data on a live system
Hiding from forensic/offline analysis is much
harder

What if the rootkit is entirely memory-based?
Offline disk analysis will not find it
No reboot persistence

Some techniques rely on covert, persistent
storage

“The patient hacker”

History of Data HidingHistory of Data Hiding

Information Hiding is Old News
Writing with invisible ink

Hiding data on computers is often just
a modern day application of existing
principles
Three major categories of data hiding:

Out-of-Band
In-Band
Application Layer

Information Hiding is Old News
Writing with invisible ink

Hiding data on computers is often just
a modern day application of existing
principles
Three major categories of data hiding:

Out-of-Band
In-Band
Application Layer

History of Data Hiding
Out-of-Band

History of Data Hiding
Out-of-Band

Definition:
The portion of a medium that is outside
the normal specifications for that medium
The “Media Management” Layer

Examples:
Slack space beyond the end of a partition
Slack space at the end of files

Example: slacker.exe
Sectors marked as bad
Host Protected Area

Definition:
The portion of a medium that is outside
the normal specifications for that medium
The “Media Management” Layer

Examples:
Slack space beyond the end of a partition
Slack space at the end of files

Example: slacker.exe
Sectors marked as bad
Host Protected Area

History of Data Hiding
In-Band

History of Data Hiding
In-Band

Definition:
The portion of a medium that is inside the
normal specifications for that medium
The “File System” Layer
Hidden data must not break the format of
the specification

Examples:
Alternative File Streams
File-System Journal Logs
Reserved but unallocated sectors

Definition:
The portion of a medium that is inside the
normal specifications for that medium
The “File System” Layer
Hidden data must not break the format of
the specification

Examples:
Alternative File Streams
File-System Journal Logs
Reserved but unallocated sectors

History of Data Hiding
Application Layer

History of Data Hiding
Application Layer

Definition:
Hiding in a higher-level format specification
Often a subset of In-Band Data Hiding viewed at
a different level of granularity

Examples:
Steganography (hiding data within data)
Hidden text within documents

Example: extra white space, tabs, new-line characters

Virus hiding within EXE’s code (.text) section
Hydran uses redundancies in i386 code to hide data

Definition:
Hiding in a higher-level format specification
Often a subset of In-Band Data Hiding viewed at
a different level of granularity

Examples:
Steganography (hiding data within data)
Hidden text within documents

Example: extra white space, tabs, new-line characters

Virus hiding within EXE’s code (.text) section
Hydran uses redundancies in i386 code to hide data

Analysis of Hiding MethodsAnalysis of Hiding Methods

Well known to Forensic Tools
Forensic tools will specifically look for
known hiding methods

Alternative File Streams
Slack space at the end of files

A strings search over a raw disk will find
textual results wherever they are located

Experienced Analysts will detect
anomalies not directly identified by
Forensic Tools

Well known to Forensic Tools
Forensic tools will specifically look for
known hiding methods

Alternative File Streams
Slack space at the end of files

A strings search over a raw disk will find
textual results wherever they are located

Experienced Analysts will detect
anomalies not directly identified by
Forensic Tools

Out-of-Band AnalysisOut-of-Band Analysis

“Coloring Outside the Lines”
Strengths

Being outside the boundaries usually results in
being overlooked
There is often a large amount of space available
Hard to discover without special tools
Resilient

Weaknesses
Hard to access without special tools
Hard to hide from plain-sight analysis of the out-
of-band area

“Coloring Outside the Lines”
Strengths

Being outside the boundaries usually results in
being overlooked
There is often a large amount of space available
Hard to discover without special tools
Resilient

Weaknesses
Hard to access without special tools
Hard to hide from plain-sight analysis of the out-
of-band area

In-Band AnalysisIn-Band Analysis

“Coloring in the Nooks and Crannies”
Strengths

Usually easy to access with existing tools
Follows the specifications

Less devious?

Weaknesses
Storage space is often small
Relies on security through obscurity – easy
to detect once method is known
Specifications may change

“Coloring in the Nooks and Crannies”
Strengths

Usually easy to access with existing tools
Follows the specifications

Less devious?

Weaknesses
Storage space is often small
Relies on security through obscurity – easy
to detect once method is known
Specifications may change

Application Layer AnalysisApplication Layer Analysis

“Splatter-Painting the Canvas”
Strengths

Hiding in plain sight
Often hard to detect

Weaknesses
Storage quantity varies with the size of underlying
data, but must be relatively small to remain
hidden
Difficult to access without special tools
Complex algorithms to hide/retrieve data
Not resilient

“Splatter-Painting the Canvas”
Strengths

Hiding in plain sight
Often hard to detect

Weaknesses
Storage quantity varies with the size of underlying
data, but must be relatively small to remain
hidden
Difficult to access without special tools
Complex algorithms to hide/retrieve data
Not resilient

EnCase – Alternate File StreamsEnCase – Alternate File Streams

EnCase – Slacker.exeEnCase – Slacker.exe

Finding New Places to HideFinding New Places to Hide

Determine constraints
How much space is needed?
What type of access is required?
How sensitive is hidden data?

Decide which hiding category best fits the
constraints
Look for previously-unknown hiding methods
in that category

Analyze an existing specification
May require reverse-engineering

Study existing data hiding techniques
Find unused reserved or slack space

Determine constraints
How much space is needed?
What type of access is required?
How sensitive is hidden data?

Decide which hiding category best fits the
constraints
Look for previously-unknown hiding methods
in that category

Analyze an existing specification
May require reverse-engineering

Study existing data hiding techniques
Find unused reserved or slack space

An NTFS OverviewAn NTFS Overview

Standard file system on Windows NT,
Windows 2000, Windows XP, and
upcoming Windows Vista
Master File Table (MFT)

Every file or directory is an entry in the
table
Stores all file system metadata in one
place
Can grow, but not shrink
Not well documented or understood

Standard file system on Windows NT,
Windows 2000, Windows XP, and
upcoming Windows Vista
Master File Table (MFT)

Every file or directory is an entry in the
table
Stores all file system metadata in one
place
Can grow, but not shrink
Not well documented or understood

MFT EntriesMFT Entries

Each entry is of fixed size
Defined in the boot sector

Each file and directory usually requires one
entry but can span multiple entries if needed
Information about an entry is stored as
attributes

Each entry has multiple attributes
Most files have a few common attributes
Attributes can be stored in any order

Has per sector fix up bytes to detect defects
Last two bytes of each sector stored in header
and fixed up on every read and write

Each entry is of fixed size
Defined in the boot sector

Each file and directory usually requires one
entry but can span multiple entries if needed
Information about an entry is stored as
attributes

Each entry has multiple attributes
Most files have a few common attributes
Attributes can be stored in any order

Has per sector fix up bytes to detect defects
Last two bytes of each sector stored in header
and fixed up on every read and write

MFT AttributesMFT Attributes

Attributes have different types
Some attribute types can be repeated

Duplicate $DATA attributes commonly called
Alternate File Streams
Directories entries stored as individual attributes

Each attribute can be named, compressed,
encrypted, etc
Each attribute is either resident or non-
resident

Resident attributes stored within MFT entry
Non-resident attributes stored as data run
(extent)

Attributes have different types
Some attribute types can be repeated

Duplicate $DATA attributes commonly called
Alternate File Streams
Directories entries stored as individual attributes

Each attribute can be named, compressed,
encrypted, etc
Each attribute is either resident or non-
resident

Resident attributes stored within MFT entry
Non-resident attributes stored as data run
(extent)

MFT Attribute ExamplesMFT Attribute Examples

All entries have
$STANDARD_INFORMATION

Stores timestamps, owner ID, security ID, etc
$FILE_NAME

Name by which an entry is known, size, and create/rename
timestamp

All files have $DATA attribute
Directories use several attributes-

Each entry in a directory is stored as a $FILE_NAME attribute
DOS 8.3 name stored in a second $FILE_NAME attribute
Directories have additional indexing attributes to improve
filename lookup performance

End of attributes in an entry is marked by 0xFFFFFFFF
Most attribute types are kept for backward compatibility

All entries have
$STANDARD_INFORMATION

Stores timestamps, owner ID, security ID, etc
$FILE_NAME

Name by which an entry is known, size, and create/rename
timestamp

All files have $DATA attribute
Directories use several attributes-

Each entry in a directory is stored as a $FILE_NAME attribute
DOS 8.3 name stored in a second $FILE_NAME attribute
Directories have additional indexing attributes to improve
filename lookup performance

End of attributes in an entry is marked by 0xFFFFFFFF
Most attribute types are kept for backward compatibility

MFT EntryMFT Entry

Usable Space in MFT entriesUsable Space in MFT entries

Reserved space within entries
Many small unused areas

2 bytes reserved in every entry header
4 byte reserved in resident attributes
Up to 14 bytes are reserved in non-resident attributes
All attributes are 8 bytes aligned

Each file typically has 32 usable bytes
Each directory typically has 64 usable bytes

Slack space after entry attributes
Files and directories typically have less than 450 bytes of
attributes
Default NTFS file systems allocate 1024 bytes per MFT entry
Almost 600 bytes per entry!

Reserved space within entries
Many small unused areas

2 bytes reserved in every entry header
4 byte reserved in resident attributes
Up to 14 bytes are reserved in non-resident attributes
All attributes are 8 bytes aligned

Each file typically has 32 usable bytes
Each directory typically has 64 usable bytes

Slack space after entry attributes
Files and directories typically have less than 450 bytes of
attributes
Default NTFS file systems allocate 1024 bytes per MFT entry
Almost 600 bytes per entry!

Usage ConcernsUsage Concerns

Common concerns
Entries may be deleted
Entries zeroed on allocation

Reserved Space
Might change in future versions of NTFS
Normally these bytes are zeroed

After-attribute slack space
Attributes might expand or be added
Commonly zero but not always

Attributes shrink due to going from resident to non-
resident, but can’t go back to being resident
All directories start as resident and go to non-resident,
but can’t go back to being resident
Attributes can be removed

Common concerns
Entries may be deleted
Entries zeroed on allocation

Reserved Space
Might change in future versions of NTFS
Normally these bytes are zeroed

After-attribute slack space
Attributes might expand or be added
Commonly zero but not always

Attributes shrink due to going from resident to non-
resident, but can’t go back to being resident
All directories start as resident and go to non-resident,
but can’t go back to being resident
Attributes can be removed

Avoiding PitfallsAvoiding Pitfalls

How do we find “safe” entries?
Many files are rarely modified or deleted

Operating system files (drivers, .inf, font, and help files)
Most installed application files are only read
If it has never been modified it most likely never will be
Files that have been around for a long time are rarely
deleted

Non-resident attributes can never become resident
Directories are rarely deleted

Non-resident directories in particular
Summary - Choose entries that are

Non-resident
Have never been modified
Old

How do we find “safe” entries?
Many files are rarely modified or deleted

Operating system files (drivers, .inf, font, and help files)
Most installed application files are only read
If it has never been modified it most likely never will be
Files that have been around for a long time are rarely
deleted

Non-resident attributes can never become resident
Directories are rarely deleted

Non-resident directories in particular
Summary - Choose entries that are

Non-resident
Have never been modified
Old

Putting It All TogetherPutting It All Together

How much space is available?
Base Windows XP Professional install has
over 12,000 MFT entries
Typical systems have over 100,000 MFT
entries
Not all entries are safe to use, but testing
has shown ~60% of MFT entries are
“safe” to use
100,000 entries x 60% x 600 bytes/entry
= 36,000,000 bytes!

How much space is available?
Base Windows XP Professional install has
over 12,000 MFT entries
Typical systems have over 100,000 MFT
entries
Not all entries are safe to use, but testing
has shown ~60% of MFT entries are
“safe” to use
100,000 entries x 60% x 600 bytes/entry
= 36,000,000 bytes!

Additional Issues
Chunking

Additional Issues
Chunking

Small scattered chunks are not very useful
The mapping problem

Need an interface that can map large blocks or
streams across many chunks
No matter what space is being used it should look
like one contiguous block to higher-level
applications

Mapping should be dynamic
Users will delete old files and directories and add
new ones
Might lose data or need to use additional entries

Small scattered chunks are not very useful
The mapping problem

Need an interface that can map large blocks or
streams across many chunks
No matter what space is being used it should look
like one contiguous block to higher-level
applications

Mapping should be dynamic
Users will delete old files and directories and add
new ones
Might lose data or need to use additional entries

Additional Issues
Encryption

Additional Issues
Encryption

Data can be found by searching the raw device
Detected data can still be protected
How good is good enough?

XOR
Blowfish
LRW-AES (Narrow-block Encryption)

Encryption plus Integrity
Self-Authenticating encryption is best

Key management is hard
Static forensic analysis can be made difficult
Dynamic forensic analysis can always find the keys

Data can be found by searching the raw device
Detected data can still be protected
How good is good enough?

XOR
Blowfish
LRW-AES (Narrow-block Encryption)

Encryption plus Integrity
Self-Authenticating encryption is best

Key management is hard
Static forensic analysis can be made difficult
Dynamic forensic analysis can always find the keys

Additional Issues
Change Tracking/Redundancy

Additional Issues
Change Tracking/Redundancy

What happens when Windows updates
an entry you are using?

NTFS only changes what it needs to
change
Might lose some but not all of your data

Keep extra copies
How much redundancy is enough?

Do your changes get noticed by NTFS?
Watch for NTFS changing an entry

What happens when Windows updates
an entry you are using?

NTFS only changes what it needs to
change
Might lose some but not all of your data

Keep extra copies
How much redundancy is enough?

Do your changes get noticed by NTFS?
Watch for NTFS changing an entry

Additional Issues
Usability

Additional Issues
Usability

How is the data presented to the user?
How is the data presented to the OS?
Use standard interfaces

Prevent the need to rewrite applications

Reading and writing data files is easy
Files execution is hard

Windows will only execute files from a file
system that it understands

How is the data presented to the user?
How is the data presented to the OS?
Use standard interfaces

Prevent the need to rewrite applications

Reading and writing data files is easy
Files execution is hard

Windows will only execute files from a file
system that it understands

FragFS
On-Disk Implementation

FragFS
On-Disk Implementation

Format
Scan MFT Table for suitable entries

Non-resident files that have not been modified within
the last year

Calculate how much space is available in each
entry
Divide space into 32 byte chunks

4 bytes for Logical Chunk Number
28 bytes for data

No book marking or index of chunks on disk
Check the last 32 bytes of every entry to see if it
is a valid chunk
If a chunk is valid then check 32 bytes before it
the same entry to see if it is also a valid chunk

Format
Scan MFT Table for suitable entries

Non-resident files that have not been modified within
the last year

Calculate how much space is available in each
entry
Divide space into 32 byte chunks

4 bytes for Logical Chunk Number
28 bytes for data

No book marking or index of chunks on disk
Check the last 32 bytes of every entry to see if it
is a valid chunk
If a chunk is valid then check 32 bytes before it
the same entry to see if it is also a valid chunk

FragFS
On-Disk Implementation

FragFS
On-Disk Implementation

Advantages
Unlimited redundancy
Modification detection
Localization of data corruption
Easy to relocate or replicate individual
chunks of data

Disadvantages
Must scan entire MFT to make updates

Advantages
Unlimited redundancy
Modification detection
Localization of data corruption
Easy to relocate or replicate individual
chunks of data

Disadvantages
Must scan entire MFT to make updates

FragFS
In-Memory Implementation

FragFS
In-Memory Implementation

Stackable block device interface
Easy to update and add new features
On disk format can easily change

User-space Application Library
Can be linked to and used by any application
Built-in mini file system

Kernel Device Driver
Creates a virtual disk
Uses the FAT file system
Can execute files directly from it!

Stackable block device interface
Easy to update and add new features
On disk format can easily change

User-space Application Library
Can be linked to and used by any application
Built-in mini file system

Kernel Device Driver
Creates a virtual disk
Uses the FAT file system
Can execute files directly from it!

FragFS Proof of Concept
Demonstration

FragFS Proof of Concept
Demonstration

Detecting NTFS AnomaliesDetecting NTFS Anomalies

Current forensic tools treat the MFT as
a black box

There is a need for forensic tools to better
understand file system structures
Forensic Analysts do not often have the
time to comb through hex dumps

We have developed a detection tool for
data hidden in MFT entry slack space

Any data beyond the End-of-Attribute
marker is considered suspicious

Current forensic tools treat the MFT as
a black box

There is a need for forensic tools to better
understand file system structures
Forensic Analysts do not often have the
time to comb through hex dumps

We have developed a detection tool for
data hidden in MFT entry slack space

Any data beyond the End-of-Attribute
marker is considered suspicious

Encase - FragFSEncase - FragFS

Detection DemonstrationDetection Demonstration

Future ConsiderationsFuture Considerations

“Hiding through Obscurity” only buys
you time
Many other unexplored data storage
areas
Hiding access tools is still a problem

Bootstrap out of the hidden space?
Should file system standards be open?

Forensic tools could better detect hidden
data
File systems will be easier to exploit

“Hiding through Obscurity” only buys
you time
Many other unexplored data storage
areas
Hiding access tools is still a problem

Bootstrap out of the hidden space?
Should file system standards be open?

Forensic tools could better detect hidden
data
File systems will be easier to exploit

Q&AQ&A

ContributorsContributors

Special Thanks To:
The Grugq

For his previous work in the field of file system anti-
forensics

Brian Carrier
For making file system forensics available to everyone

Fred Jacobs
For his help with the detection utility

Sam Stover
For help with forensic tools and brainstorming

Matt Hartley
For excellent insight and patience with the project

Special Thanks To:
The Grugq

For his previous work in the field of file system anti-
forensics

Brian Carrier
For making file system forensics available to everyone

Fred Jacobs
For his help with the detection utility

Sam Stover
For help with forensic tools and brainstorming

Matt Hartley
For excellent insight and patience with the project

Contact InformationContact Information

Irby Thompson
lantholin (at) gmail.com

Mathew Monroe
mathew.monroe (at) gmail.com

	FragFS: An Advanced Data Hiding Technique
	Overview
	Why is Data Hiding important?
	History of Data Hiding
	History of Data HidingOut-of-Band
	History of Data HidingIn-Band
	History of Data HidingApplication Layer
	Analysis of Hiding Methods
	Out-of-Band Analysis
	In-Band Analysis
	Application Layer Analysis
	EnCase – Alternate File Streams
	EnCase – Slacker.exe
	Finding New Places to Hide
	An NTFS Overview
	MFT Entries
	MFT Attributes
	MFT Attribute Examples
	MFT Entry
	Usable Space in MFT entries
	Usage Concerns
	Avoiding Pitfalls
	Putting It All Together
	Additional IssuesChunking
	Additional IssuesEncryption
	Additional IssuesChange Tracking/Redundancy
	Additional IssuesUsability
	FragFSOn-Disk Implementation
	FragFSOn-Disk Implementation
	FragFSIn-Memory Implementation
	FragFS Proof of ConceptDemonstration
	Detecting NTFS Anomalies
	Encase - FragFS
	Detection Demonstration
	Future Considerations
	Q&A
	Contributors
	Contact Information

