

Malware Repository
Requirements

Policy Analysis
Paul Vixie && David Dagon

Outline

• How malware is collected and shared now
• Proposed service-oriented repository
• Automated unpacking
• Header analysis

Current Practices

• Numerous private, semi-public malware
collections
– Need trust to join (for some value of “trust”)
– “Too much sharing” often seen as competitive

disadvantage

• Incomplete collections: reflect sensor bias
– Darknet-based collection
– IRC surveillance
– Honeypot-based collection

Shortcomings

• Malware authors know and exploit
weaknesses in data collection

• Illuminating sensors
– “Mapping Internet Sensors with Probe Response

Attacks”, Bethencourt, et al., Usenix 2005

• Automated victims updates
– “Queen-bot” programs keep drones in 0-day

window

Malware Life Cycle

A-day 0-day D-day R-day

Four conceptual phases of malware life cycle:

A-day: malware authored
0-day: release
D-day: first opportunity for detection
R-day: response (e.g., virus signature update)

Malware Life Cycle

A-day 0-day D-day R-day

Recent AV goal: reduce response time

AV update cycles previously measured weeks/days

Now measured in hours/minutes (or should be)

Malware Life Cycle

A-day 0-day D-day R-day

How to improve detection time...

Given that...
●Malware authors avoid known sensors
●Repositories don’t share

Sensor Illumination

• Technique
– Malware authors compile single, unique virus;
– Send to suspected sensor
– Wait and watch for updates

Malware Life Cycle

A-day 0-day D-day R-day

Thus, response is hours/days; detection is days++

Minutes*Days*

* Average order of time; anecdotes will vary

Queen Bot Programs

• Automated update of existing bot
– Repacking with new key; multiple packers
– Dead code injection
– Variable renaming, functional decomposition

• New bot will
– Evade prior AV signatures
– Have same behaviour, goal, feature set

Malware Updating

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

Bot runs for ~1/2 day, and updates to new, evasive binary

UPDATE!UPDATE!

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

A-day 0-day D-day R-day

UPDATE!UPDATE!

UPDATE!UPDATE!

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

A-day 0-day D-day R-day

PerpetualPerpetual
Zero-dayZero-day
windowwindow

UPDATE!UPDATE!

UPDATE!UPDATE!

Example from virustotal.com

Why Pack?

• Reduced malware size
• Obfuscation transformation

– Opaque binaries prevent pattern analysis
– Invalid PE32 headers complicate RE

• Increases response time
– Unpacking often requires specialized skill sets

Who Shares Now, and Why?

• Current AV industry practice is basically
“hostage exchange”

• Time-value of shared material has to
approach zero first

• “Competitive advantage” means advantage
to an AV's shareholders – or does it?

Is More Sharing Better?

• In F/OSS, the value of sharing is known to
outweigh the value of hoarding

• We propose a similar model for malware
• Cost:Benefit ratio (to AV shareholders and

customers) of specialization was obvious to
Adam Smith (see Wealth of Nations)

• As with SALT-II, the interesting part of the
problem is “compliance monitoring”

Malware Repo Requirements

• Malware repos should not:
– Help illuminate sensors
– Serve as a malware distribution site

• Malware repo should:
– Help automate analysis of malware flood
– Coordinate different analysts (RE gurus, MX

gurus, Snort rule writers, etc.)

Approach: Service-Oriented
Repository

• Repository allows upload of samples
– Downloads restricted to classes of users

• Repository provides binaries and analysis
– Automated unpacking
– Win32 PE Header analysis
– Longitudinal detection data

• What did the AV tool know, and when did it know it?

– Soon: Malware similarity analysis, family tree

Overview

Work Flow

Unpacking

• Dynamic analysis permits unpacking
– Analogous to halting problem

• Heuristic approximation
– White list jumps to: (static) basic block entry

points, and DLL functions
– If known, continue; else assume halting
– Rinse, lather, repeat for recursive packing

Unpacking Heuristic

Unpacking Example

Unpacking Performance

Results

• Detecting packing
– 6K sample set
– Compared with PEiD

Tool Packed Unpacked
PE iD 43.00% 53.00%
MalwareRepo 63.00% 37.00%

Results

• Improved AV detection

AV Scan6K
very old
Samples

0.8K
Claimed “OK”

Unpacking

5.2K
Samples
Claimed

VX

AV ReScan

 42
are now

claimed VX

10-40%
improved

AV detection
on “old” stuff

Repository User Classes

• Unknown users
– Scripts, random users, even bots

• Humans
– CAPTCHA-verified

• Authenticated Users
– Known trusted contributors

Repository Access Goals

• Unknown users
– Upload; view aggregate statistics

• Humans
– Upload; download analysis of their samples

• Authenticated Users
– Upload; download all; access analysis

Hub/Spoke Structure

• Hub: web server, file store, database,
authentication system – mirrorable

• Spokes: unpacking and analysis partners
– receive a feed showing new malware
– can download any/all of it
– can upload unpacked versions, output of their

in-house (proprietary) analyzers
– can advertise value-added in-house content

Economic Goals

• Economics is about human action not
simply money

• So, what do we want people to do, or stop
doing, or do differently?

• Act in their own best interests, of course!
• So, we intend to make the benefits of

sharing more intuitive to an AV CEO

Social Goals

• In human (biological) viruses, disclosure is
an obligation – hoarding is unthinkable

• Somehow when the virus is not biological,
hoarding is thinkable

• Is it life-safety that makes the difference, or
is it profitability?

• We see no necessary conflict between
sharing and profitability

Conclusion

• Service-oriented repository
• See tisf.net for details
• Questions?

