

Inside This Issue�
�
1�
October Meeting�
�
2�
November/December Schedule�
�
3�
Customized Apps Without ‘Changes’�
�
4�
Computer Fund Drive Report�
�

�EMBED MSWordArt.2 \s * mergeformat�����Volume 1 Issue 10	Newsletter of the Rocky Mountain Fox User Group	October 1994	

�
1994 User Group Officers

President, Doug Sherman	794-5262

V.P. & Programs, Jim Slater	860-7694

Secy/Treas., Charlie Winger	971-0484

Membership, Martin Rex	333-2022

Publicity, Dick Mills	750-6177

Begin Class, Ida Valdez	273-6868

Prog. Class, Dan Greenberg	841-6511

FoxPro Lab, Steve Carrico	755-1181

Newsletter, Don Anderson	750-2998

Events & Contacts

October Group Meeting	10/26

FoxPro II Prog Class	11/02

FoxPro Lab	11/09

Newsletter Submissions	11/07

Fox User BBS	972-1816

SysOp, Charlie Bass	973-0100

Editor's Notes

Our sincere thanks to Margie Sobey who has been the newsletter editor for the last year. During that time she has used her magic to mold submitted articles in much more readable text. Thank you Margie for your contributions to the users group.

Don Anderson has volunteered to become the newsletter editor. He publishes a couple other newsletters for various Denver area groups.

At the September meeting, George Sexton presented his popular Novell Netware Library for Foxpro DOS/Windows called GPLIB. This product gives a Foxpro program direct access to many Netware functions, such as login, drive mappings, trustee rights, transaction tracking, and print queue management. It’s available for $99.00 + S/H from MH Software, 303-438-9585. A trial version is available on the BBS as GP254.ZIP.

October Group Meeting

The next User Group meeting is Wednesday, October 26, 1994. It will be held at the Englewood Public Library, 3400 S. Elati, Englewood, from 6:15 - 8:15 PM.

The program will feature two presentations. First, Dan Greenberg will demonstrate the recently-released dBASE for Windows. Not only is dBASE for Windows the hottest competitor to Foxpro right now, but it also contains many of the features we will seen in Foxpro 3.0 early next year.

Next, Charlie Bass will do a presentation on “table-driven programming in Foxpro”. He has developed several programming tools that work off Foxpro tables, such as a data dictionary and a report driver. The table-driven approach allows rapid customization of applicatoins for new clients while maintaining flexibility for future changes. Anyone interested in speeding application development should be able to benefit from Charlie’s tips and techniques.

Also, 30-day trial edition diskettes will be available for NavCIS, the new off-line CompuServe navigation program for Windows. Dvorak Development (in Louisville) has offered our group a 25% discount (to $52.00 plus tax and shipping) if we wish to purchase several copies together. Details will be given at the meeting.

NOVEMBER’s Program: John Henkel will demonstrate his product for the Mississippi Dept. of Education. The program gathers information at the school level, merges it into a master database, and produces the numerious reports required by the Federal government. It is already in use in several districts, and the state hopes to adopt it statewide in the next few months IN ADDITION, we will have a short demonstration of the new Windows NT 3.5 Workstation and Server products, AND of FoxPro running under NT.

November/December Meeting Schedule

REMEMBER that the meetings in November and December will be on the 3rd Wednesday of the month.�
Tips and Techniques: This month the newsletter features:

Customized FoxPro Applications - Without Changing Program Code

By Steve Bigelow

Change is the one constant we can all depend on. Whether you’re working in a corporate environment or as an ISV, it’s a safe bet that, at some point, your program’s users will ask for something different in their application. Earning my living as a programmer, I have mixed emotions about the constancy of change: on the one hand, more changes mean I stay gainfully employed a while longer; on the other, I’d rather develop new applications than revise existing ones.

The typical response to a user’s change request is to go back into carefully-constructed program code, and change something in the code itself. After a change is made and tested to a FoxPro application, the project is rebuilt as an .APP or .EXE file, and released back to the users. After some time, another change is requested, and the cycle repeats.

Personally, I’d rather change things external to the application -- i.e. things in the application’s immediate environment -- than the application code itself. First of all, changing the application code means another round of testing, which means time that the changed application isn’t available to my users. Secondly, I don’t always have a copy of FoxPro handy when the user needs a simple change.

As fate (and Microsoft) would have it, most PCs have access to an ASCII text editor such as DOS EDIT or Windows NotePad. So, when feasible, I use ASCII text files to store values that I anticipate the user will want to change. Then, when the user requests a change that I’ve anticipated, I can simply edit the ASCII file, and let the user re-start the application -- no re-compile, no new bugs.

It seems like most user-requested changes can be put into one of the following five categories:

Network-level changes, such as moving the location of data files.

Workstation-specific changes, such as hardware modifications.

Application-specific (internal) configuration changes, such as changing default values.

Logic changes, such as changing a calculation routine.

Screen and/or user interface changes.

The last two types of requests -- changing the application logic or user interface -- require changes to the program code. (I suppose it might be possible to change the user interface through variables in an ASCII file, but it seems like the effort would be even more work than going back into the code and changing the application the “traditional” way.)

However, many other changes can be implemented without changing the program’s code.

Right out of the box, FoxPro accommodates many network-level and workstation specific changes through careful use of the CONFIG.FP or CONFIG.FPW file. When used with an .EXE file, this ASCII text file allows application-specific configuration of the FoxPro environment. Most of FoxPro’s SET commands can be specified in the CONFIG.FP file, along with a handful of configuration-file-only settings.

In a multi-server, multi-national environment, I’ve grown very fond of using these FoxPro commands in my configuration files to adapt to changing network or workstation requirements:

BELL=ON|OFF, to enable or disable the BEEP that sounds when the end of a field is reached, or when invalid data is entered.

CLOCK=ON|OFF, to display or hide the FoxPro system clock.

CONFIRM=ON|OFF, to determine how the user can navigate between screen objects.

CURRENCY=<expC>, to define the currency symbol for the application, generally for multi-national applications.

DEFAULT=<drive>|<dir>, to define the default drive and/or directory for the application

ESCAPE=ON|OFF, to enable or disable the [Esc] key to interrupt program execution. (Great for real-time debugging of an EXE before you turn it loose on your users.)

EXCLUSIVE=ON|OFF, to enable exclusive or shared use of the application’s data files. (This is a quick-n-dirty way to differentiate between single and multi-user versions of an application.)

F<num>=<char str>, to define the action taken when the specified function key is pressed.

HELP=ON|OFF, to enable or disable the FoxPro online help facility

HELP=<file>, to specify the name of the online help file for the application.

MEMLIMIT=<% of avail. memory>, <minimum memory>, <maximum memory> to configure the application’s use of available memory

ODOMETER=<n>, to specify the reporting interval for certain processing commands. (Especially useful to ease nervous users with slower PCs.)

PATH=<path>, to specify the search path for file searches. (This is very useful when the same application is installed on multiple servers or single-user PCs.)

POINT=<expC>, to determine the decimal point character, generally for multi-national applications.

REPROCESS=<expN, AUTOMATIC>, to specify how many times the application can try to lock a file or record before reporting an error. (Helpful in fine-tuning an application to a network.)

RESOURCE=ON|OFF, to enable or disable changes to the application’s resource file.

RESOURCE=<file>, to specify a resource file for the application.

SEPARATOR=<expC>, to specify the place separator in numeric picture formats, usually with multi-national applications.

Through clever use of the user’s DOS search path, it’s possible to define a “default” CONFIG.FP file for most application users, and user-specific CONFIG.FP files to provide alternate configurations of the application. For example, the “default” CONFIG.FP file can be stored in the same directory as the application’s .EXE file, while an alternate configuration file with instructions to, say, set the odometer to 1 on a slow PC, can be put in a different directory that will be seen by FoxPro “before” the directory containing the EXE.

To ensure that my configuration file doesn’t get erased when the network administrators are grooming a network disk, I rename the CONFIG.FP file so that it matches the name of the EXE, but has an extension of .INI -- most administrators know not to mess with INI files, but aren’t so adept with .FP or FPW files. For example, if the main program file is MYPROG.EXE, I’ll name the configuration file MYPROG.INI. To associate the re-named configuration file with the application, the command line MYPROG.EXE -T -CMYPROG.INI can be used; the -T parameter means “Don’t display the FoxPro splash screen;” the -C parameter means “Use the following file as the configuration file.”

In keeping with this concept, ASCII text files can also be used to specify application-specific values, such as program defaults, available program options, etc. The approach I use is to create an ASCII file such that every line in the file represents a valid FoxPro assignment statement, e.g. lcMyName = "Steve Bigelow", I put a routine in my application that scans this file and sets values accordingly.

A few caveats to this approach:

Make sure you’ve assigned a default value inside your application to any variable that’s set in the ASCII file. For example, if your ASCII file contains the statement lcDataSource = "F:\FOXDATA\ORDERS.DBF", ensure that the variable lcDataSource has already been assigned a default value such as “F:\NULDATA\ORDERS.DBF”. This helps to ensure that your application runs no matter how its environment has changed. (In this case, if F:\NULDATA\ORDERS.DBF doesn’t exist, FoxPro will still trigger an error when the application runs, but the error be more closely related to the real cause of the error, e.g. “File ["<file>"] does not exist” instead of “Variable ["<variable>"] not found.”)

The placement of the code segment that loads and executes the settings in the ASCII file is critical. Make sure your program loads the ASCII file after any default values have been declared, but before the memvar is actually used by the program. Also, make sure your program doesn’t “hard-code” a memvar value after the ASCII file has been loaded if you want the ASCII file to determine the memvar’s value.

For example, let’s assume that we have an application that calculates sales tax; the tax rate can be unique to each site in which the application is installed. In addition, let’s assume that the sales tax can be a combination of city, county, and/or state taxes; again the applicable taxes can vary from installation site to site.

In this situation, we could hard-code the tax rates and types, and re-code for every different PC or network situation we come across. Or we could set the tax rates and types in a data table, and use the table as a look-up at run-time. Or we could specify the tax rate and tax type memvars in an ASCII text file for import into our application. Both the DBF and ASCII text files allow a high degree of site-specific independence from the PC or network’s configuration; in widely-varying situations, I feel the ASCII file method is a little more easy to maintain (and I don’t have to write a routine to maintain the look-up table).

The following code segment -- which can be in the Setup segment of a FoxPro screen object -- can be used to open and read the contents of the ASCII file, and set memvars in the application accordingly:

*- Ensure the variables are for our use only

private lnCityTax	&& City tax rate

private lnCntyTax	&& County tax rate

private lnStateTax	&& State tax rate

private llCityTax	&& Is there a city tax?

private llCntyTax	&& Is there a county tax?

private llStateTax	&& Is there a state tax?

... (Additional program code)

*- Establish default values: No taxes, & no tax rates!

lnCityTax = 0

lnCntyTax = 0

lnStateTax = 0

llCityTax = .F.

llCntyTax = .F.

llStateTax = .F.

... (Additional program code)

*- Open and read ASCII text file to override default values

*- If the file isn't found, or if a specific memvar isn't

*- specified in the INI file, the default value remains

lnIni = fopen("MYAPPCFG.INI")

if lnIni > -1

 do while not feof(lnIni)

 lcDefault = fgets(lnIni)

 if not left(ltrim(lcDefault),1)="*" ;

 or not "&&" $ lcDefault

 *- Line isn't a comment

 &lcDefault

 endif

 enddo

 =fclose(lnIni)

endif

... (Additional program code)

If the application can’t locate the file MYAPPCFG.INI, the internal default values are in effect -- in this case, no sales tax types are in effect, so no sales tax would be calculated. If, however, the file MYAPPCFG.INI is located, the application will “read” through the file, and set the internal values accordingly.

Let’s work through an example. If the .INI file contains the following lines:

*- MYAPPCFG.INI: Initialization for MYAPP.EXE

*-

*- Release Notes: 10/12/94 slb Initial Release

llCityTax = .T.

lnCityTax = 0.054

the application would set the tax rate and tax type memvars to their default values. After “reading” the MYAPPCFG.INI file, llCityTax would be set to .T., and lnCityTax to 0.054; llCntyTax and llStateTax would still be set to .F., and lnCntyTax and lnStateTax would still be set to 0, since these values weren’t specified in the .INI file.

Since the .INI file can contain any valid FoxPro expression, the MYAPPCFG.INI file could contain the following lines and still be “correct” (if not just a little bit silly). Also note that the .INI file can contain FoxPro SET commands, just like the CONFIG.FP file:

*- MYAPPCFG.INI: Initialization for MYAPP.EXE

*-

*- Release Notes: 10/12/94 slb Initial Release

wait window nowait “Loading values from MYAPPCFG.INI”

*- Installation-specific configuration

set BELL ON

set PATH to C:\MYAPP\DATA;C:\MYAPP

set RESOURCE to C:\MYAPP\MYAPP.DBF

*- Turn on city tax only if "today" isn't Sunday

llCityTax = (dow(date()) # 1)

lnCityTax = (1 - 0.946)

wait clear

Another way to set memvar values from an external file is to set the ASCII file up as a “normal” Windows .INI file, with section delimiters called ProfileStrings, then use calls to the Windows API (using FoxPro’s REGFN() and CALLFN()) to read the profiles. I chose not to use this approach, as many of my applications are running on both DOS and Windows platforms; Windows API calls aren’t generally available to DOS programs, so I’d have to write my own version of functions like GetProfileString() anyway.

�

A final thought: ASCII .INI files can also be used to create user-specific configurations for an application, for example, to have your application “remember” variables from the last time a user ran the application. Many Windows applications use this approach to “remember” what file(s) you last had open, or what your menu configuration was. Simply create an ASCII text file that’s unique to each user, and store it in a place the user can get to, such as the C:\WINDOWS directory on the user’s local hard drive in a Windows environment. Then program your application to check for the existence of this INI file, and load memvar values accordingly.

About the author: Steve Bigelow is a Senior Programmer/Analyst for Exabyte Corporation in Boulder. A Clipper programmer since 1987, Steve “converted” to FoxPro following Walter Kennemar’s “I was born a nerd” speech at the first Denver FoxPro User’s Group meeting. Steve can be reached at Exabyte at (303) 447-7807

�

Computer Fund Drive Report

As of 10/18/94, 36 individuals have contributed $875.00 towards the purchase of a portable computer for the User Group. Thank you to all of you for helping us get closer to our $1,000.00 goal/need. We are asking the members who have regular employment, and our business sponsored members, to contribute up to $25.00 towards this fund.

Rocky Mountain Fox User Group

	c/o Doug Sherman

	7386 South Ogden Way

	Littleton, CO 80122	

Having our own computer available for the monthly programs provides a necessary resource to bring you the kind of computer demonstrations of FoxPro you want to see. The User Group already owns an overhead projector and an LCD video display to use with the projector.

NOTE: The November and December Meetings will be on the �	3rd Wednesday, NOT the 4th Wednesday of the month.

If you have not yet made your contribution to the computer purchase, please get out your check book now. Make your check payable to the “Rocky Mountain Fox User Group” and mail it to Doug Sherman (see address on the mailing label of this newsletter). Please limit your contribution to $25.00, or whatever you can afford. Thank you!

Your Article Prints Here Next Month

Your programming tip/technique can appear in the newsletter next month. You have received good ideas from previous months issues. It’s now time to put your own good idea into print! SHARE YOUR IDEAS! Contact the newsletter editor for details.

BE PROUD OF YOUR CREATIVITY, PUBLISH!

SEE YOUR NAME IN PRINT.

Page � PAGE �2�	Fox Footnotes

Newsletter of the Rocky Mountain Fox User Group	Denver, Colorado

Page � PAGE �2�	Fox Footnotes

Newsletter of the Rocky Mountain Fox User Group	Denver, Colorado

Page � PAGE �4�	Fox Footnotes

Newsletter of the Rocky Mountain Fox User Group	Denver, Colorado

