� EMBED PBrush ���

(INDEX

� INDHOLD \o "1-3" �(History	� GÅTILKNAP _Toc373584795 � SIDEHENVIS _Toc373584795 �0��

(Introduction	� GÅTILKNAP _Toc373584796 � SIDEHENVIS _Toc373584796 �1��

(Disclaimer	� GÅTILKNAP _Toc373584797 � SIDEHENVIS _Toc373584797 �2��

(Keyboard layout	� GÅTILKNAP _Toc373584798 � SIDEHENVIS _Toc373584798 �2��

(Program documentation	� GÅTILKNAP _Toc373584799 � SIDEHENVIS _Toc373584799 �2��

Overview	� GÅTILKNAP _Toc373584800 � SIDEHENVIS _Toc373584800 �3��

Explenation	� GÅTILKNAP _Toc373584801 � SIDEHENVIS _Toc373584801 �3��

[1] Copyright text.	� GÅTILKNAP _Toc373584802 � SIDEHENVIS _Toc373584802 �3��

[2] Information on the operating system and found debuggers.	� GÅTILKNAP _Toc373584803 � SIDEHENVIS _Toc373584803 �3��

[3] Data for first memory dump, set by the user.	� GÅTILKNAP _Toc373584804 � SIDEHENVIS _Toc373584804 �4��

[4] Data for second memory dump, set by the user. See [3]	� GÅTILKNAP _Toc373584805 � SIDEHENVIS _Toc373584805 �4��

[5] Menu concerning first memory dump.	� GÅTILKNAP _Toc373584806 � SIDEHENVIS _Toc373584806 �4��

[6] Menu concerning second memory dump. See [5]	� GÅTILKNAP _Toc373584807 � SIDEHENVIS _Toc373584807 �4��

[7] General purpose menu, concerning the global use of DUMPEXE.	� GÅTILKNAP _Toc373584808 � SIDEHENVIS _Toc373584808 �4��

[8] Utility menu with functions that helps you get the job done faster.	� GÅTILKNAP _Toc373584809 � SIDEHENVIS _Toc373584809 �5��

[9] Information about the current memory status.	� GÅTILKNAP _Toc373584810 � SIDEHENVIS _Toc373584810 �5��

[10] Status messages from DUMPEXE and input prompt.	� GÅTILKNAP _Toc373584811 � SIDEHENVIS _Toc373584811 �5��

(Error messages	� GÅTILKNAP _Toc373584812 � SIDEHENVIS _Toc373584812 �6��

(Soft-Ice user notice	� GÅTILKNAP _Toc373584813 � SIDEHENVIS _Toc373584813 �7��

(How to unpack an exefile	� GÅTILKNAP _Toc373584814 � SIDEHENVIS _Toc373584814 �7��

(How to get in touch with us	� GÅTILKNAP _Toc373584815 � SIDEHENVIS _Toc373584815 �11��

(Greetings	� GÅTILKNAP _Toc373584816 � SIDEHENVIS _Toc373584816 �11��

��
(History

 Version	Release Note

 1.0	Never released to the public, only for our beta-testers

 1.1	First public release

 1.2	Now with Soft-Ice debugger support. Activate with INT FCh

 2.0	Autodump from TD, Soft-ICE and GAMETOOLS. Detects a lot of things.

 	Uses UMB. Added Total Memory Dump feature, Show User Screen. Now

 	swaps dos stack so DUMPEXE can be activated at any time (reentrance)

 2.1	Fixed a bug the the dos version check

(Introduction

This program is able to unpack ANY dos exe-packed file. Many other programs, such as up, tron, unp and vgacbust give you the same ability. But those programs can only expand/unpack files packed with known exepackers. By using the OBSESSiON DUMPEXE toolpack, you can unpack any of those exe-files that the above utilitys gave up on. Of course this can't be done by inserting a quarter (kr.) into the crypt-o-mate. We have to do a little more than this. This is here you, the OBSESSiON DUMPEXE toolpack, and your debugger gets into the picture.

All you have to do is this :

 Load the exeprogram into your favourite debugger (eg. TD, Soft-Ice, GameTools)

 Debug the program until first original (unpacked) instruction

 Dump the code/data, using the DUMPEXE program, via the FILE 1 option

 Terminate the loaded program

 Allocate a 4 Kb memory block via the DUMPEXE program

 Reload the program, and ensure that the entry point is different

 Debug the program until first original (unpacked) instruction

 Dump the code/data, using the DUMPEXE program, via the FILE 2 option

 Terminate the loaded program

 Deallocate the 4 Kb memory block via the DUMPEXE program

 Run MAKEEXE with the needed parameters.

 Example : MAKEEXE #NoName#.1 #NoName#.2 ORIGINAL.EXE UNPACKED.EXE

To technically understand how this can be done, please refer to selection :

(How to unpack an exefile.

If this sounds easy, exit your doc reader now, if not, keep on reading.

�
(Disclaimer

This software has been tested and found to work properly. OBSESSiON have no responsbility whatsoever for any damages caused by use, or misuse of this software.

IF YOU DISAGREE WITH ANY OF THOSE TERMS, PLEASE REMOVE THIS SOFTWARE NOW.

If after a 24 hour test period, you still wish to continue using this software, you NEED to send me a postcard with your name and address or register at our homepage at HTTP://WWW.CYBERNET.DK/USERS/BUGSY. The reason is that it's the ONLY way I can explain to my wife why I have invested MORE than 200 hours developing this software. This is the only way I can see that someone really is using this software. If I don't receive anything by mail, I won't update the program any more.

This means :

 IF NOT (ReceivedAnyPostCardOrEMail) THEN

 HALT (Programmer)

 ELSE

 ReleaseNextVersion

(Keyboard layout

Left shift + right shift	: Activates the resident part of DUMPEXE

TAB		: Jump to next menu block

Shift TAB		: Jump to previous menu block

Arrow up/down	: Next/previous menu selection/block

Arrow left/right	: Next/previous digit or menu block

ESC		: Terminate DUMPEXE or return to previous state

Enter		: Confirm selection/input

(Program documentation

Install DUMPEXE into memory by starting the file DUMPEXE.EXE. The program will now go resident (TSR) in memory. This means that it can be envoked at any time and within any program (such as a debugger). If UMB is available, the 'DOS stack' and 'Screen swap data' will be placed here.To activate DUMPEXE, please press <LEFT SHIFT> and <RIGHT SHIFT> at the same time (also called the hotkey). A menu like the one shown below, should appear. To return to interrupted program, press <ESC>.

NOTICE :	In previous versions you couldn't start DUMPEXE by pressing the hotkey within 	the dos command line (InDOS). This has now been fixed by using the technique	called 'DOS stack switching'. DUMPEXE do NOT run under DESQview.

�
	 The main picture of DUMPEXE

� EMBED PBrush ���

Overview

 [1] Copyright text.

 [2] Information on the operating system and found debuggers.

 [3] Data for first memory dump, set by the user.

 [4] Data for second memory dump, set by the user. See [3]

 [5] Menu concerning first memory dump.

 [6] Menu concerning second memory dump. See [5]

 [7] General purpose menu, concerning global use of DUMPEXE.

 [8] Utility menu with functions, helps you get the job done faster.

 [9] Information about the current memory status.

 [10] Shows status messages from DUMPEXE and serves as an input prompt.

Explenation

[1] Copyright text.

	Tells who made this brilliant program.

[2] Information on the operating system and found debuggers.

	Shows if current session is a DOS, WINDOWS or OS/2 session. Also shows 	which debuggers have been found active at the present moment.

	Can show a mixture of the following text strings :

	 [8086, 80286, (80386],

	 [Real mode, V86 mode],

	 [Dos, Win Std, Win Enh, OS/2],

	 [No debugger, Turbo Debugger, Soft-Ice, GameTools]

	Example : Dos, (80386, Real mode, Soft-Ice, GameTools

�
	As you can see, it is possible to have more than one debugger loaded

	at the same time. This can be usefull when combining Turbo Debugger and 	GameTools.

[3] Data for first memory dump, set by the user.

	This subwindow is used to enter information about the program you want to 	unpack. You have to fill out ALL fields to get a working copy of the unpacked 	program.

	CS : Current code segment

	IP : Current instruction pointer

	SS : Current stack segment

	SP : Current stack pointer

	PSP : Current program prefix segment, usually the same as ES

	Size : Size of program in bytes

	Name : Name of dump file

	To change a value, move the selector to the decided item and press <ENTER>. 	Enter the new value and press <ENTER> again.

	

	REMARK	: All numbers are shown and entered in heximal values. The 			 filename can not be entered manuelly.

[4] Data for second memory dump, set by the user. See [3]

[5] Menu concerning first memory dump.

	It is used for dumping the code/data block entered in [3] or [4].

	Dump exe-code	: Select this one to dump selected code/data block.

	Autodetect name	: Let DUMPEXE autodetect the name of the program

			 its processing, and use it as the dump filename.

	Autodetect size	: Let DUMPEXE autodetect the size of the code/data 				 block. There are two ways to autodetect this size. It 				 can be done by Stack or by PSP. The most common 				 way is 'By Stack', because this usually gives a 				 smaller, and more acurrent image of the original 				 unpacked exefile.

[6] Menu concerning second memory dump. See [5]

[7] General purpose menu, concerning the global use of DUMPEXE.

	Raster Bar		: Switch between Raster Bar and Textmode Bar. It's a 				 good idea to choose Textmode Bar if you are running				 under other systems than DOS such as Windows and 				 OS/2.

	Memory snapshot	: Takes a snapshot of the first megabyte of memory, 				 and puts it in a file in the current directory, called 				 SNAPSHOT.MEM

	Reset menu 	: Sets all items to their initial value. Use it if 				 something, somehow goes bananas.

	Uninstall		: Removes the DUMPEXE software from the 				 memory. Use it if you want to remove the 				 DUMPEXE from memory.

[8] Utility menu with functions that helps you get the job done faster.

	User screen		: Shows the screen as it was before DUMPEXE was 				 started. Use this function instead of pressing <ESC> 				 and then the hotkey. This function can also be called 				 by pressing <U> while in view mode.

	 (De)Allocate 4Kb	: Used to allocate/deallocate a block of 0100h 				 paragraphs (4 Kb). This should be done after the first 			 dump and termination, and before you reload the 				 program. Please take a look at the tutorial later in this 			 document.

	Auto-Config		: Adds 0101h to all segment registers in [2] and store 				 them in [3]. It is useful after preparing for second 				 dump. This works on 9 out 10 packed files. Please 				 notice that CS in [3] matches the one shown by the 				 debugger. If not, enter all values manually. You only 			 have to use this function if "Fill from debugger" 				 fails.

	Fill from debugger	: Read the register shown by the debugger and 				 automatically place the values into first or second 				 dumpfile. This is a very useful function, since it 				 gives you the ability to unpack the exefile FAST.

[9] Information about the current memory status.

	Free	: Amount of free basememory, in Kb.

	Slack	: Number of memory fragments in Kb, after allocating 4 Kb.

[10] Status messages from DUMPEXE and input prompt.

	This line serves as an error message and input scratch.

�
(Error messages

No size given.

You have to enter how much memory the program needs to dump.

No memory allocated.

You are trying to auto-config file 2, and you haven't used "allocate 4KB". You must manually enter the data required to dump

Can't auto-config file 2, sorry.

You have to manuelly, enter the data required to dump a program. Or you could use the function : "Fill from debugger"

The PSP-segment is not valid.

You are using a function that requires a valid PSP segment, entered	in [3] or [4].

The PSP-segment for file 1 is not valid.

See the above.

Can't find name.

DUMPEXE is not able to find the name of the program you want to	dump. The program is using a standard name instead.

Can't uninstall, vector hooked by another program.

You have loaded another program after DUMPEXE. Unfortunately 	the two programs have both hooked onto the same interrupt. Unload the other program first and try again.

Can't allocate necessary memory.

Boot your machine with fewer drivers, and try again. If this does'nt help, you are 	f.....

Out of stack.

Your memory is fragmented to much. The DUMPEXE has a 4 Kb stack and in this case it doesn't seem to be enough. Contact me (BUGSY) and ask for a version with a larger stack, or modify the exeheader yourself. :)

Can't release memory.

This error is most likely caused by the program you are about to dump, or the stack of this program has been destroyed. Dump the code and boot your PC.

Can't make file.

Oops, a disk error. Check your harddisk with "chkdsk /f" or "scandisk"

Can't write file, disk full ?.

Free some disk space, and try again.

Can't deallocate memory.

The MCB (memory control block) has been destroyed. Dump the code and boot your PC.

(Soft-Ice user notice

If you are using Soft-Ice, the hotkey is disabled. This is because Soft-Ice runs in protected mode and uses its own interrupt vector table. To activate DUMPEXE, enter the following sequence at the Soft-Ice command line prompt :

	BPX CS:IP	: So we can return after Int 0FCh has terminated

	GENINT FC	: Start the exe-dumper

	GENINT FC	: Start the exe-dumper again (if you need it)

	BC 0	: Clear the breakpoint set by BPX. The number

		 (in this case 0) is the name of the breakpoint label.

Don't start DUMPEXE unless you are are at the very first instruction of the unpacked exefile because your current location might be in the keyboardhandler or equal.

(How to unpack an exefile

The file named "unpackme.exe" is a packed exe-file. It is used to illustrate how to use this tool, and nothing more. The file is packed with pklite using normal compression.

I will use Turbo Debugger for this example, because if you know how to use the ultimate debugger Soft-Ice, you probably don't need this introduction anyway. If you don't know anything about using a debugger, I advise you to consult your debuggers manual.

Try to execute the tutorial program TESTEXE.EXE and take look at the text it displays. The program will tell you if it's packed or not.

REMEMBER : Start DUMPEXE.EXE before proceeding with the next step.

Start debugging TESTEXE.EXE by writing : TD.EXE TESTEXE.EXE

 The picture shown, by TD (Turbo Debugger), should look something like this :

� EMBED PBrush ���

NOTICE	: Due to the nature of the PC-memory, the segment registers (CS, DS, ES, SS) 	 	 might show different values than the one shown.

Start executing the code until cs:0128, by pressing <F4> at location cs:0128, shown below.

� EMBED PBrush ���

The unpacker has copied itself to a location, which is just after the (not yet) unpacked code location. Singlestep one instruction (<F7>), and you'll hopefully see this :

� EMBED PBrush ���

�
Press <F4> at location cs:015d (the retf instruction), found by pressing <PageDown> a couple of times; and then <F7>. That's it. You have now unpacked the TESTEXE program.

If you have done it right, TD shows something like this :

� EMBED PBrush ���

As you can see there are three far calls. These are direct calls. This means that it will make a all to a certain location in memory. If we dump the memory used by TESTEXE, we'll have an image of the program. But this is not enough to make a new exefile. This is because an exefile is not just an image of the memory, like a com file is. We need a second dump from a different

memory location. This is because of the direct calls. By comparing the two dumps, we can find the relocations (direct calls) needed to build a new exefile. Information like min/max memory usage is taken from the original exefiles header, but let's get on with the tutorial.

There are serval ways to enter the values of SP, DS, ES, SS, CS and IP into DUMPEXE. Since we are using one of the supported debuggers, we can use the "Fill from debugger" function. This function takes register values, shown by the debugger, and automatically puts them into DUMPEXE. Start DUMPEXE by pressing the hotkey, and then <ENTER> at the "Fill from debugger" function. Answer <1> to whatever the values should be places in first or second dump file. Another way is to remember the values of SP, DS, ES, SS,CS and IP before pressing the hotkey, and enter the values at their corresponding locations in [2]. If you decide to do so, you will probably notice that there is no field for ES. This is because the initial value of ES, points to the PSP, so write the value of ES in the PSP field instead.

It's now time to tell DUMPEXE the size of the memory block we want to dump. Use <TAB> until you get to [4]. Press <ENTER> at "Autodetect size". There are two ways of getting the size of the program. One is by using the stack, the other is by using PSP. 99 % of all cases, you should use "by stack". Press <S>, and the size will be put into size field. If DUMPEXE somehow fails to calculate the right value, you have the option of entering a size that you

decide. Press <ENTER> at "Autodetect name", and the name of the executeable file will be put into the name field. The last thing we have to do is to dump the program to a file. This is done by pressing <ENTER> at "Dump exe-code". DUMPEXE will probably do it so fast that you won't notice the "process message" that appears.

�
Below is a picture of DUMPEXE after the first dump. Again, remember

that values varie from dump to dump.

� EMBED PBrush ���

Press <ESC> and then <F9> in TD. The program has now terminated, and it's time to allocate a 4KB memory block.

Start DUMPEXE again, and press enter at "Allocate 4Kb". The menu item will change to "Deallocate 4Kb". Press <ESC>, and reload the program by pressing <CTRL F2>. Start debugging like you did the first time. When you have reached the first instruction of the original code, enter all the information, like CS, SS.... in [3]. Autodetect size and name. Dump the code, and we are almost done. Again terminate your program, by pressing <F9> in TD. Start DUMPEXE again, and press <ENTER> at 'Deallocate 4Kb'. Exit your debugger.

Run the MAKEEXE program with parameters :

	First dump, second dump, original exefile, new filename.

or like this :

	MAKEEXE TESTEXE.1 TESTEXE.2 TEXTEXE.EXE UNPACKED.EXE

The MAKEEXE program compares the two memory dump and builds a new exefile of the information found in the original exefiles header.

After MAKEEXE has built the new exefile, the screen should look like this :

� EMBED PBrush ���

�
If the message 'End of valid code detected at ...' shows up, just press <N>

This message means that MAKEEXE has detected that the two dumps do not contain valid code/data anymore. Normally one would answer 'No', to whether MAKEEXE should continue or not. If you answer 'yes', the current position would be concidered as a relocation in the exe header. In special cases, where the unpacked exefile is smaller than the packed, one should say

yes, even if MAKEEXE asks more than oncs. But as I said, only in special cases.

I think this would be enough for you to continue on your own.

(How to get in touch with us

If you have any questions about the use of these programs, feel free to contact us.

You can get in touch with us by :

Writing a letter to	: Benjamin Petersen

		 Joergen Jensensvej 16B

		 DK-4700 Naestved

		 Denmark

E-Mail me at 	: bugsy@cybernet.dk

World Wide Web (WWW)	: http://www.cybernet.dk/users/bugsy

Call me at 		: +45 53 725-610 or +45 40 204-347

(Greetings

My greetings goes to (no order) :

Spawn/OBSESSiON	: Thanks for the menu system in this production!

Darkman/VLAD	: Thanks for your help about TSR detection.

Henrik Kjaargård	: Thanks for proofreading this documentation.

Hitech		: Never put a bug into a bottle of coca cola!

Bionic		: Why did you close STH ?

Jazz		: Sorry, but I've quit smoking (NOT).

Sketz/Silente PC	: No more logos for 'the top BBS', sad...

Drake		: Thanks for the Soft-Ice tip!

And all those people whose name I've forgotten.

Have fun, and remember there are still some people who DON’T take money for making good programs.

[BUGSY/OBSESSiON]

P.S. If you are interrested in the source code, just contact me. I'm sure we can work it out.

DOCUMENTATION FOR THE OBSESSiON EXE-DUMPER VERSION 2.1

�SIDE �

Page �SIDE �11�

Copyright 1994..97 by BUGSY / OBSESSiON

DOCUMENTATION FOR THE OBSESSiON EXE-DUMPER VERSION 2.1

Copyright 1994..97 by BUGSY / OBSESSiON

