"6_2_3_15.TXT" (6412 bytes) was created on 12-30-88 DISPLAYS AND CONTROLS The crew compartment of the orbiter contains the most complicated displays and controls ever developed for an aerodynamic vehicle. The displays and controls exist in a variety of configurations, with toggle, push button, thumbwheel and rotary switches. Meters are circular and rectangular dials and rectangular tapes. Switches and circuit breakers are positioned in groups corresponding to their functions. All controls are protected against inadvertent activation. Toggle switches are protected by wicket guards, and lever lock switches are used wherever inadvertent action would be detrimental to flight operations or could damage equipment. Cover guards are used on switches where inadvertent actuation would be irreversible. The displays and controls in the orbiter crew compartment enable the flight crew members to supervise, control and monitor the space shuttle mission and vehicle. They include controllers, cathode ray tube displays and keyboards, coding and conversion electronics for instruments and controllers, lighting, timing devices, and a caution and warning system. The displays and controls are designed so that a crew of two can perform normal operations in all mission phases (except payload operations). They are designed to enable a safe return to Earth from either the commander's or pilot's seat; flight-critical displays and controls are accessible from the forward flight deck station from launch to orbital operations and from deorbit to landing rollout. All displays and controls have dimmable floodlighting in addition to integral meter lighting. There are more than 2,020 displays and controls in the forward and aft flight decks and middeck of the orbiter. This represents more than 100 times the number of controls and displays found in the average automobile. Orbiter displays and controls consist of panel displays, mechanical controls and electrically operated controls. Generally, the displays and controls are grouped by function and arranged in operational sequence from left to right or top to bottom with the most critical and most frequently used devices located to maximize the crew's performance and efficiency. The displays and controls are divided between the forward flight station and aft flight station. The forward station contains all the equipment necessary for the operation of the orbiter. The aft flight station contains displays and controls necessary for rendezvous and docking and for controlling the remote manipulator system and payloads. The forward flight control area panels are labeled L for the left, or commander's position; R for the right, or pilot's position; F for the front section; O for the overhead position, and C for the lower center section. The left panels contain circuit breakers, controls and instrumentation for the environmental control and life support system, communications equipment, heating controls, and the trim and body flap controls. The commander's speed brake and thrust controller is on the left panel. The right panels contain more circuit breakers; controls for the fuel cells, hydraulic system, auxiliary power units and engines; and the pilot's communication controls. Electrical power distribution controls are also located on the right-hand panels. The pilot's speed brake and thrust controller is to his left on the center console. The overhead panel contains lighting controls, the computer voting panel and fuel cell purge controls. The center console contains the flight control system channel selector, air data equipment, and communication and navigation controls. It also contains fuel cell circuit breakers and the pilot's trim and body flap controls. The center forward panel contains the three cathode ray tube display sets, the caution and warning system, aerosurface position indicators, backup flight control displays, and the fire protection system displays and controls. There are primary flight displays for both the commander and the pilot as well as auxiliary power unit and hydraulic displays and controls for the landing gear. The glareshield contains the head-up display. The commander and the pilot have a rotational hand controller with integral switching to activate the backup flight control system. The commander also has a translational hand controller. The aft flight station contains left, right and center panels. The panels contain the power reactant storage and distribution cryo tank heater control, auxiliary power unit and hydraulic heater controls, reaction control system and orbital maneuvering system heater controls, Ku-band and remote manipulator system pyro jettison controls, communication and utility power plug-ins, translational and rotational hand controllers, an attitude director indicator, Ku-band and S-band communications controls, recorder controls, payload controls, remote manipulator system controls, closed-circuit television controls, a cathode ray tube and keyboard system. The contractors involved are: Abbott Transistor, Los Angeles, Calif. (transformers); Aerospace Avionics Inc., Bohemia, N.Y. (propellant quantity indicator and annunciators); Aiken Industries, Mechanical Product Division, Jackson, Mich. (thermal circuit breakers); Applied Resources, Fairfield, N.J. (rotary switch); Bendix Corp., Teterboro, N.J. (surface position, alpha Mach, altitude/vertical velocity indicators); Bendix Corp., Davenport, Iowa (accelerometer indicator); SLI System, West Caldwell, N.J. (mission and event timer); Armtec Industries Inc., Manchester, N.H. (digital select thumbwheels, toggle switches); Eldec Corp., Lynwood, Wash. (tape meter); Honeywell Inc., Clearwater, Fla. (flight control system); IBM Corp., Federal Systems Division, Electronics Systems Center, Owego, N.Y. (cathode ray tube display unit, computer keyboard), ILC Technology, Sunnyvale, Calif. (cabin interior and exterior lighting); J.L. Products, Gardena, Calif. (push button switch); Lear Siegler, Grand Rapids, Mich. (attitude director indicator); Martin Marietta, Denver, Colo. (caution and warning status display, limit module); Weston Instruments, Newark, N.Y. (event indicator, electrical indicator meter); Collins-Rockwell, Cedar Rapids, Iowa (display driver unit, horizontal situation indicator); Aeropanel, Parisippany, N.J. (integrally illuminated panels); Betatronix, Hauppauge, N.Y. (potentiometers).